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A Derivation of the Current Generations GE(s) Effects

From equations (13a) and (13b) we find that

w′(s) = (1− α)α [k′(s)]
α−1 dk

′(s)

ds
= (1− α)α [(1− κ)(1− α)kα]α [s]α−1

R′(s) = α(α− 1) [k′(s)]
α−2 dk

′(s)

ds
= α(α− 1) [(1− κ)(1− α)kα]α−1 [s]α−2

and thus

κηw′(s) + (1− κ)(1− α)kαR′(s)s = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 [κη − 1] .

For a general period utility function u(.) the general equilibrium effect reads as

GE(s) = (1− α)α [(1− κ)(1− α)kα]α [s]α−1 β

∫
u′ (co(η)) [κη − 1] dΨ(η). (1)
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If the utility function is logarithmic, equation (1) specializes, after substitution for co(η)

from the budget constraint, to equation (18b) in the main text. Note that∫
u′ (co(η)) [κη − 1] dΨ(η) = (κ− 1)

∫
u′(co(η))dΨ(η) + Cov [u′(co(η)), (κη − 1)]

< (κ− 1)

∫
u′(co(η))dΨ(η) < 0.

Thus, the general equilibrium effect is unambiguously negative as asserted in the main text.

B Derivation of Optimal Saving Rate for Log-Utility

B.1 Sequential Formulation

In this section we provide a full solution to the Ramsey optimal taxation problem for the
case of logarithmic utility in its sequential formulation, for an arbitrary set of social welfare
weights. We first recognize from the aggregate law of motion that

ln(kt+1) = ln(1− α) + ln(1− κ) + α ln(kt) + ln(st)

= κ +
t∑
i=0

αi ln(st−i) + αt+1 ln(k0)

= κt+1 +
t∑
i=0

αi ln(st−i),

where κt+1 = ln(1− α) + ln(1− κ) + αt+1 ln(k0). Therefore the objective of the Ramsey
government is given by (suppressing maximization-irrelevant constants)

∞∑
t=0

ωtV (kt, st) =
∞∑
t=0

ωt [ln(1− st) + αβ ln(st) + α (1 + αβ) ln(kt)]

= χ+
∞∑
t=0

ωt

[
ln(1− st) + αβ ln(st) + α (1 + αβ)

∞∑
i=1

αi−1 ln(st−i)

]

= χ+
∞∑
t=0

[
ωt ln(1− st) + ln(st)

(
αβωt + α (1 + αβ)

∞∑
i=t+1

ωiα
i−(t+1)

)]
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and thus the social welfare function can be expressed purely in terms of saving rates as

W ({st}∞t=0) = χ+
∞∑
t=0

ωt

[
ln(1− st) + ln(st)

(
αβ + α (1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1

)]
,

where χ is a constant that depends positively on the initial capital stock k0, but is again
irrelevant for maximization. Taking first order conditions with respect to st and setting it
to zero delivers the optimal saving rate in the main text:

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt
αj−1

)−1 .

B.2 Recursive Formulation

To obtain the closed form solution of the recursive version of the problem for ωt+1

ωt
= θ by

the method of undetermined coefficients guess that the value function takes the following
log-linear form:

W (k) = Θ0 + Θ1 ln(k).

Using this guess and equations (13a)-(13c) (and writing kt+1(st) recursively as k′(s))
rewrite the Bellman equation (16) as:

W (k) = Θ0 + Θ1 ln(k) (2)

= max
s∈[0,1]

{ln((1− s)(1− κ) (1− α) kα)

+β

∫
ln (κηw(s) +R(s)k′(s)) dΨ(η) + θW (k′)

}
= max

s∈[0,1]
{ln((1− s)(1− κ) (1− α) kα)

+β

∫
ln ([κ(1− α)η + α][s(1− κ)(1− α)kα]α) dΨ(η) + θW (k′)

}
= (1 + αβ) ln((1− κ) (1− α)) + β

∫
ln (κη(1− α) + α) dΨ(η)

+θΘ0 + θΘ1 ln [(1− κ)(1− α)] +
[
α + α2β + αθΘ1

]
ln(k)

+ max
s∈[0,1]

{ln(1− s) + (αβ + θΘ1) ln(s)} .
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For the Bellman equation to hold, the coefficient Θ1 has to satisfy

Θ1 =
α(1 + αβ)

(1− αθ)
.

We also immediately recognize that the optimal saving rate chosen by the Ramsey planner
is independent of the capital stock k and determined by the first order condition

1

1− s
=
αβ + θΘ1

s

and thus
s∗ =

αβ + θΘ1

1 + αβ + θΘ1

=
α(β + θ)

1 + αβ
(3)

as given by equation (20) in the main text. Plugging in s∗ and Θ1 into the Bellman equation
(2) yields a linear equation in the constant Θ0 whose solution completes the full analytical
characterization of the Ramsey optimal taxation problem.

C Details of the Empirical Analysis

C.1 Sample Selection

We use data from the Panel Study of Income Dynamics (PSID), which interviews house-
holds in the United States annually from 1968 to 1997 and every other year since then.1

The representative core sample consists of about 2,000 households in each wave, and we
use data from 1977–2012.2 Household pre-government income is defined as labor income
before taxes, which we calculate as the sum of head and spouse annual labor income. We
impute taxes using Taxsim, and add 50% of the estimated payroll taxes to the sum of head
and spouse labor incomes to obtain pre-government income. We deflate all nominal val-
ues with the annual CPI, and select households if the household head is between 25 and
84 years of age. The minimum of household pre-government income needs to be above
a constant threshold, which is defined as the income from working 520 hours at half the
minimum wage.

1We thank Chris Busch for helping us with the data.
2We do not use earlier waves because of poor coverage of income transfers before the 1977 wave.
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Labor Income Share. We take our pre-government income measure to compute the ratio
of labor income to total income (defined as the sum of labor income and capital income) for
each household in the sample and take the average. This gives 0.792, suggesting that α ≈
0.208.

Estimate of κ. In our model, young workers have average productivity 1 − κ, and old
workers have average productivity κ. Thus the ratio of average earnings of old to young
workers is d = κ

1−κ and thus κ = d
1+d

. We define young workers as workers in the age
range 25 to 54 and old workers as workers of age 55 to 84. As ratio of their earnings we
obtain d = 0.453 and thus κ ≈ 0.312.

Lower bound support of η. Based on our income measure we compute the ratio of the
lowest income in our sample of old workers of age 55 to 84 to the median income in that
group giving 3.35%.

Residual Income Variance We run a panel regression, with log income as dependent
variable and time dummies, a cubic in age, a control for the number of adult household
members and an additional cubic in years of education for college workers as independent
variables giving a variance of 0.648.

D Overaccumulation of Capital in the Competitive Equi-
librium and Positive Capital Taxation

In this section we provide the details of the relation between the solution to the Ramsey
problem in the steady state and the overaccumulation of capital (a capital stock above
the golden rule capital stock) in the steady state equilibrium absent government policy,
including the proof of Proposition 4 in the main text.

D.1 Definitions

First, and as usual, define the golden rule capital stock as the capital stock that maximizes
aggregate (per capita) steady state consumption C = kα − k. Thus, the golden rule capital
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stock, saving rate and associated gross real interest rate are given by:

kGR = α
1

1−α

sGR =
α

(1− κ)(1− α)

RGR = 1.

A capital stock and associated saving rate is inefficiently high if it is larger than the golden
rule level, and thus the associated gross real interest rate is less than 1. In this case aggregate
consumption can be increased by lowering the capital stock in this case.

Now let us turn to the steady state of a competitive equilibrium. In any such steady
state, the gross real interest rate is related to the steady state capital stock k through

R = αkα−1.

From the law of motion of capital (equation (8b)) in a steady state

k = s(1− κ)(1− α)kα

the steady state equilibrium interest rate R is related to the saving rate s by

R =
α

s(1− κ)(1− α)
.

The steady state equilibrium saving rate s itself is given by (see equation (11))

s =
1

1 + [(1− τ)αβΓ]−1 =
(1− τ)αβΓ

1 + (1− τ)αβΓ

which leads to a steady state relation between the real interest rate and the tax rate:

R =

1
(1−τ)βΓ

+ α

(1− κ)(1− α)
= R(τ ; Γ).

A higher tax rate τ reduces the saving rate, the capital stock and increases the real interest
rate. Holding τ constant the steady state interest rate is decreasing in the amount of income
risk measured by Γ. The steady state interest rate in the absence of government policy
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(τ = 0) is given by

R(τ = 0; Γ) =

1
βΓ

+ α

(1− κ)(1− α)
.

D.2 Overaccumulation of Capital in the Competitive Equilibrium

Recall that Γ̄ = 1
κ(1−α)+α

. The steady state competitive equilibrium in the absence of taxes
has overaccumulated capital (a capital stock above the golden rule and R(τ = 0; Γ) < 1)
if and only if

1
βΓ

+ α

(1− κ)(1− α)
< 1

Γeff :=
1

[1− α− 1/Γ̄]β
< Γ (4)

The constant Γeff gives the first bound used in Proposition 4.
The optimal Ramsey steady state (i.e., θ = 1) tax rate (see equation (21)) is given by

1− τ =
1 + β

(1− α) βΓ

and thus the optimal Ramsey tax rate is positive, τ > 0, if and only if

1 + β

(1− α) βΓ
< 1

Γτ=0 :
1 + β

(1− α) β
< Γ. (5)

In the proposition we made the assumption that β < 1
(1−α)Γ̄−1

= κ(1−α)+α
(1−κ)(1−α)−α to insure that

all cases of the proposition can occur. Under this assumption Γτ=0 < Γeff and the interval in
the second part of the proposition is nonempty (the equilibrium capital stock can be below
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the golden rule yet capital is taxed at a positive rate) since

Γτ=0 :=
1 + β

(1− α) β
<

1

[1− α− 1/Γ̄]β
:= Γeff

1 + β

1− α
<

1

1− α− 1/Γ̄

1 + β <
1− α

(1− κ)(1− α)− α

β <
κ(1− α) + α

(1− κ)(1− α)− α
,

which holds on account of the assumption made in the proposition. Thus if the steady state
competitive equilibrium capital stock is above the golden rule the optimal tax on capital is
positive, but the opposite is not necessarily true. If there is no risk, however, then Γ = Γ̄

and conditions (4) and (5) coincide:

1

[1− α− 1/Γ̄]β
< Γ̄

1

β
+ 1 < (1− α)Γ̄

1 + β

(1− α) β
< Γ̄

This results in the following proposition, referenced in the main text:

Proposition 1. Let θ = 1 and the assumption in Proposition 4 be satisfied. If the steady

state competitive equilibrium capital stock is larger than the golden rule, the optimal Ram-

sey tax rate τ is positive. If η is degenerate at η = 1, then the reverse is true as well: τ > 0

only if the steady state competitive equilibrium capital stock is larger than the golden rule.

It remains to show the ranking of the savings rates in the different parts of Proposition 4.
Recall that the savings rates are defined as

sCE =
1

1 + [αβΓ]−1 (6a)

s∗ =
α(1 + β)

1 + αβ
(6b)

sGR =
α

(1− κ)(1− α)
. (6c)

It then follows directly from the definition of Γeff that sCE < sGR if and only if Γ < Γeff,
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and it follows directly from the definition of Γτ=0 that sCE < s∗ if and only if Γ < Γτ=0.

Finally, the condition on β in the proposition implies that s∗ < sGR.

E Characterization of Efficient Allocations

E.1 Characterization of Pareto Efficient Allocations

In this section we derive the solution to the unconstrained social planner problem and
study whether the Ramsey government implements Pareto efficient allocations. The ob-
vious answer is no, since an unconstrained social planner would provide full insurance
against idiosyncratic η shocks, which, given the market structure, is ruled out in any com-
petitive equilibrium. More interesting is the question how the saving rate chosen by the
unconstrained planner compares to that selected by a constrained planner and the Ramsey
government. The planner maximizes social welfare

ω−1β

∫
ln(co0(η0))dΨ(η0) +

∞∑
t=0

ωt

[
ln(cyt ) + β

∫
ln(cot+1(ηt+1))dΨ(ηt+1)

]
subject just to the sequence of resource constraints

cyt +

∫
cot (ηt)dΨ(ηt) + kt+1 = kαt .

We again restrict attention to geometrically declining welfare weights: ωt+1/ωt = θ ≤ 1.

Trivially, the social planner provides full insurance against idiosyncratic income risk so
that cot (η) = cot for all η and all t. Thus the problem simplifies to

max
{cyt ,cot ,kt+1}

ω−1β ln(co0) +
∞∑
t=0

ωt
[
ln(cyt ) + β ln(cot+1)

]
s.t.

cyt + cot + kt+1 = kαt
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with k0 > 0 given. The first order conditions are given by

ωt
cyt

= λt

βωt−1

cot
= λt

λt = λt+1αk
α−1
t+1

cyt + cot + kt+1 = kαt .

The optimal allocation of consumption across two generations at a given time t is then
given by

cot
cyt

=
βωt−1

ωt

and over time for a given generation it is characterized by

cot+1

cyt
= βαkα−1

t+1 .

In contrast to the Ramsey problem, consumption of the old in the first period is no longer
irrelevant for maximization because the social planner can redistribute resources intergen-
erationally whereas the Ramsey planner, given the assumed restriction on instruments can-
not. Thus, we characterize optimal allocations in period 0 and in an arbitrary period t > 0

separately.

Periods t > 0. Since we have assumed that ωt+1

ωt
= θ we obtain

cot
cyt

=
βωt−1

ωt
=
β

θ

and thus from the resource constraint we get

cyt =
θ

θ + β
(kαt − kt+1)

cot =
β

θ + β
(kαt − kt+1) .

Define, similarly to the Ramsey problem, the saving rate of the social planner as

st =
kt+1

(1− κ)(1− α)kαt
.
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Then from the first order conditions we obtain

1

cyt
=

β

cot+1

αkα−1
t+1

kt+1

(kαt − kt+1)
=

αθkαt+1(
kαt+1 − kt+2

)
(1− (1− κ)(1− α)st+1) = αθ

(
1

(1− κ)(1− α)st
− 1

)
.

As in the neoclassical growth model we can show that the only solution to this first or-
der difference equation that does not eventually violate the non-negativity constraint of
consumption and does not violate the transversality condition of the social planner is a
constant saving rate s solving

(1− (1− κ)(1− α)s) = αθ

(
1

(1− κ)(1− α)s
− 1

)
.

Define s̃ = (1− κ)(1− α)s then we have

1− s̃ = αθ

(
1

s̃
− 1

)
with solutions s̃ = 1 (and thus s > 1) and s̃ = αθ. Therefore the constant saving rate that
solves the social planner problem from period t = 1 onward is given by:

sSP =
αθ

(1− κ)(1− α)
.

The optimal sequence of capital stocks, starting from k0, is therefore given by

kt+1 = (1− κ)(1− α)stk
α
t

= αθkαt .

Period 0. Let us next characterize the allocation in period t = 0. We get

co0
cy0

=
βω−1

ω0
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and thus only the ratio of the first two welfare weights matters. Therefore we can, without
loss of generality, normalize ω0 = 1 so that

co0
cy0

= βω−1.

Using this in the resource constraint one obtains

cy0 =
1

1 + βω−1

(kα0 − k1)

co0 =
βω−1

1 + βω−1

(kα0 − k1)

k1 = s0(1− κ)(1− α)kα0 .

Then from the first order conditions we get

1

cy0
=

β

co1
αkα−1

1

k1 (1 + βω−1)

(kα0 − k1)
=

α (θ + β) kα1
(kα1 − k2)

s0(1− κ)(1− α) (1 + βω−1)

(1− s0(1− κ)(1− α))
=

α (θ + β)

(1− αθ)

and thus

sSP0 =
α (θ + β)

(1− κ)(1− α) [(1 + βω−1) (1− αθ) + α (θ + β)]

=
αθ

(1− κ)(1− α)
[

(θ+βθω−1)
θ+β

(1− αθ) + αθ
] . (7)

Now, suppose that ω−1 = 1/θ. Then (7) simplifies to

sSP0 = sSP =
αθ

(1− κ)(1− α)
. (8)

We summarize these results in the following
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Proposition 2. The solution to the social planner problem, for any k0 > 0, is given by

sSP0 =
αθ

(1− κ)(1− α)
[

(θ+βθω−1)
θ+β

(1− αθ) + αθ
]

and associated capital stock in period 1

k1 = sSP0 (1− κ)(1− α)kα0 .

and consumption allocations in period 0

cy0 =
1

1 + βω−1

(
1− sSP0 (1− κ)(1− α)

)
kα0

co0 =
βω−1

1 + βω−1

(
1− sSP0 (1− κ)(1− α)

)
kα0

and in all periods t > 0 by a constant saving rate

sSP =
kt+1

(1− κ)(1− α)kαt
=

αθ

(1− κ)(1− α)

and associated sequence of capital stocks

kt+1 = αθkαt (9)

and consumption levels

cyt =
θ(1− αθ)kαt

θ + β
(10a)

cot =
β(1− αθ)kαt

θ + β
. (10b)

If, in addition ω−1 = 1
θ

then sSP0 = sSP and equations (9) and (10) apply for all periods t ≥
0.

Also notice that for θ = ω−1 = 1, i.e., for a planner that maximizes steady state utility
and also weighs the initial generation equally, then the optimal saving rates in all t ≥ 0 are

sSP0 = sSP =
α

(1− κ)(1− α)
= sGR.
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We summarize these insights in the next

Corollary 1. If θ = 1 (associated with maximizing steady state utility), then the social

planner chooses the golden rule saving rate

sSP = sGR =
α

(1− κ)(1− α)

in all t > 0 and the capital stock converges, in the long run, to its golden rule level

kGR = α
1

1−α

which satisfies

α
[
kGR

]α−1
= 1

and associated consumption levels

cy =
(1− α)

1 + β
α

α
1−α

cot =
β(1− α)

1 + β
α

α
1−α

Therefore, the social planner chooses the golden rule capital stock kGR maximizing net

output yGR =
(
kGR

)α − kGR and splits it efficiently between cy and co according to the

rule co = βcy. If, in addition, ω−1 = 1 then also

sSP0 = sSP =
α

(1− κ)(1− α)
.

Obviously, the Ramsey equilibrium is not Pareto efficient because it does not provide
full consumption insurance against idiosyncratic income risk. What is more remarkable is
that even though the optimal Ramsey saving rate is independent of income risk (and the
same as in a model where income risk is absent), it is in general different from the saving
rate optimally chosen by the social planner (who fully insures the idiosyncratic income
risk). This result is summarized in the next

Corollary 2. For a fixed social discount factor θ ∈ [0, 1], the optimal Ramsey saving rate

equals the saving rate chosen by the social planner if and only if the following knife edge

condition is satisfied:

(1− κ) =
θ(1 + αβ)

(1− α)(β + θ)
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Note that the Ramsey government can implement the saving rate desired by the social
planner through an appropriate choice of taxes, but unless the condition above is satisfied,
it is suboptimal to do so. The reason is that the Ramsey government has no instruments to
transfer resources across generations and thus forcing the planner saving rate onto house-
holds (by appropriate choice of the capital tax rate) results in an equilibrium allocation of
consumption across the young and the old that is typically suboptimal.3

E.2 Proof of Constrained Efficiency of Ramsey Allocation

Proof. Define the saving rate of the constrained planner as

st =
kt+1

(1− κ)MPL(kt)
=

kt+1

(1− α)(1− κ)kαt
.

Thus, the law of motion for the effective capital stock for the constrained planner is

kt+1 = st(1− α)(1− κ)kαt

as in the Ramsey problem. Furthermore, from the constraints on the constrained planner

cyt = (1− κ)MPL(kt)− kt+1 = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1) = kt+1MPK(kt+1) + κηt+1MPL(kt+1)

= αkαt+1 + κηt+1(1− α)kαt+1

= [α + κηt+1(1− α)] kαt+1.

Thus the consumption allocation is the same as in the Ramsey equilibrium and the solution,
in terms of saving rates, of the constrained planner problem is the same as the Ramsey
equilibrium.

3Finally note that if one were to treat the social discount factor θ as a free parameter, then one concludes
that the Ramsey optimal saving rate is efficient, in that it is identical to the choice of the social planner with
a different social discount rate θSP = (β+θ)(1−κ)(1−α)

1+αβ .
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E.3 Proof of Pareto-Improving Tax-Induced Transition

E.3.1 Log Utility

Proof of Proposition 6. The capital stock evolves according to

kt+1 = st(1− κ)(1− α)kαt .

Therefore if the Ramsey government implements s∗ through positive capital taxes in the
first period of the transition this will lead to a falling capital stock along the transition.
Recall from (1) that utility of a generation born in period t is given by

Vt = ln(cyt ) + β

∫
ln(cot+1(ηt+1))dΨ.

Now, suppose that the policy is implemented (as a surprise) in period 1 where k1 = k0.
The initial old are unaffected by this policy and thus indifferent to the tax reform. Now we
need to characterize the utility consequences for all generations born along the transition.
Denoting by s0 = sCE the equilibrium saving rate in the initial steady state, we have

∆Vt = Vt(s
∗)− Vt(s0) = ln(cyt (s

∗))− ln(cyt (s0)) + β

∫ (
ln(cot+1(s∗))− ln(cot+1(s0))

)
dΨ.

where the consumption allocations are

cyt (st) = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1; st) = st(1− κ)(1− α)kαt αk
α−1
t+1 + κηt+1(1− α)kαt+1

= [α + κηt+1(1− α)] kαt+1.

Thus

∆Vt = ln [((1− s∗)kαt )]− ln [((1− s0)kα0 )]︸ ︷︷ ︸
=∆V +

t

+αβΓ2

ln [kt+1]− ln [k0]︸ ︷︷ ︸
=∆V −t


Since the capital stock is monotonically decreasing along the transition, ∆V −t < 0 for
all t > 0 and ∆V −s < ∆V −t < 0 for all s > t > 0, and we call ∆V −t the “loss” term.
From the monotonically decreasing capital stock it also follows that ∆V +

t is monotonically
decreasing along the transition. Since in the limit we have limt→∞∆Vt > 0 (because s∗
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maximizes steady state utility), it follows that ∆V +
t > 0 for all t > 0 and we therefore

refer to ∆V +
t as the “gains” term. Finally, since gains are monotonically decreasing and

losses—the absolute value
∣∣V −t ∣∣—are monotonically increasing we achieve the smallest

gains and largest losses for t → ∞ and since limt→∞∆Vt > 0, it follows that ∆Vt > 0 in
all t > 0.

E.3.2 Generalization

The previous results generalize to additively separable life-time utility functions of the form

Vt = u(cyt ) + g(cot+1,Ψ) (11)

with u′ > 0, u′′ < 0 for all cyt > 0 and g′ > 0, g′′ < 0 for all cot+1 > 0. Aggregating second
period consumption with function g(·) nests standard (discounted) expected utility formu-
lations as well as non-expected utility preferences such as Epstein-Zin-Weil preferences,
analyzed in Section 6.3.6. As before, write consumption allocations in terms of the sav-
ing rate s as (cyt (s), c

o
t+1(η, s)). As shorthand, below we denote as us = u′(cyt (s))× c

y
t (s)

′,

with gs defined correspondingly. Given this notation the first-order condition of the Ramsey
problem for θ = 1 is

∂V∞
∂s

= us + gs = 0 ⇔ −us = gs. (12)

We make the following additional

Assumption 1.

lim
s→1
−us > lim

s→1
gs (13)

and, for all s ∈ (α, 1),

εu′,c = −u
′′(cyt (s))

u′(cyt (s))
<
cyt (s)

′′

cyt (s)
′ = εcs,s, (14)

where εu′,c is the semi-elasticity of marginal utility4 with respect to consumption cy and εcs,s
is the semi-elasticity of consumption cy with respect to the saving rate s.

4In in a static stochastic environment this would be equal to the measure of absolute risk aversion. We
prefer the term semi-elasticity of marginal utility because first period consumption is not stochastic.
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The next proposition generalizes Proposition 6 to additively separable utility functions
with the above properties. It also provides conditions for existence and uniqueness of a
solution to (12):

Proposition 3. Let the utility function be given by (11). Under assumption 1 the solution

to (12) gives a unique s∗ ∈ (α, 1). Further assume that sCE > s∗. Then implementing s∗

in period t = 0 for all t ≥ 0 leads to a Pareto improving transition.

Before proving the above proposition, note that condition (13) is required for existence,
and condition (14) for uniqueness of s∗ ∈ (α, 1). We further show that condition (14)
implies that ∂V∞

∂s
< 0 for sCE > s∗ so that the generation born in the limit of the transition

when the economy approaches the new steady state benefits from implementing s∗ < sCE .
We later establish for Epstein-Zin-Weil preferences, which nest CRRA preferences as a
special case, that all these conditions are satisfied. Thus, we show analytically that the
conditions apply quite generally. For the general class of HARA utility functions

u(c) =
1− γ
γ

(
ι · c

1− γ
+ ξ

)γ
with parameters ι > 0, ξ, γ, and the restriction ι·c

1−γ + ξ > 0 and γ 6= 1 (ruling out linear
utility) condition (13) may fail to hold so that there is no solution to the Ramsey problem.
For instance, with exponential utility condition (13) may fail to hold since there is no Inada
condition as consumption approaches zero, so that lims→1−us <∞.5

As for the assumption that sCE > s∗ notice that we earlier established that sCE is in-
creasing with risk if there is precautionary savings. Thus, with sufficient risk we have sCE >
s∗. Also, as for the second part of the proposition on the Pareto improving transition, the
proof follows exactly the same logic as the proof of Proposition 6.

This proposition does not address whether the equilibrium has overaccumulated capi-
tal. As before, the interesting case is where s∗ < sCE < sGR, where sGR = α

(1−α)(1−κ)
is

the golden rule saving rate. Finally, notice that the proposition is silent about implementa-
tion. We address implementation under the assumption of existence of a unique s∗ in the
subsequent Proposition 4 for expected utility and later in Proposition 23 for EZW utility.

5Consider nested exponential utility, i.e., γ = −∞, and ξ = 1. Further parameterize ι = 1, α = 0.33, κ =
0.7 and η = 1, i.e., a degenerate deterministic case. Also assume an expected utility formulation with β = 1

g(co; Ψ) = β

∫
u(co(η))dΨ(η).

Then condition (13) fails to hold, an interior s∗ does not exist and the optimal saving rate is s∗ = 1.
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Proof of Proposition 3. First, we establish that s∗ is unique and that with uniqueness we
get for sCE > s∗ that ∂V∞

∂s
< 0. To show this, we analyze the first-order condition of the

Ramsey government (12). The next steps will establish that (i) gs > 0 is a continuous and
downward sloping function in s, (ii) −us > 0 for s > α, and (iii) that condition (14) is
required for a single crossing of gs and −us. Findings (i)-(ii) together with (13) establish
existence, the additional item (iii) then insures uniqueness of s∗.

Now start from the allocation in the long-run steady state. Recall from Section E.3
above that consumption when young and old is

cyt = (1− st)(1− κ)(1− α)kαt ,

cot+1 = (α + κ(1− α)η) kαt+1,

where

kt+1 = st(1− κ)(1− α)kαt . (15)

In steady state we thus have

k = (s(1− κ)(1− α))
1

1−α

and therefore steady state consumption allocations are

cy = (1− s)s
α

1−α ((1− α)(1− κ))
1

1−α (16a)

co = (α + κ(1− α)η) ((1− α)(1− κ))
α

1−α s
α

1−α . (16b)

Use this in the social welfare function with θ = 1 to obtain

V∞ = u(cy) + g(co; Ψ)

= u
(

(1− s)s
α

1−α ((1− α)(1− κ))
1

1−α

)
+ g((α + κ(1− α)η) ((1− α)(1− κ))

α
1−α s

α
1−α ; Ψ).

From the above we readily observe that gs > 0 as well as gss < 0 because of decreasing
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marginal utility.6 To establish existence of s∗ observe that

us = u′(cy(s))× cy(s)′ = u′ ((1− α)(1− κ))
1

1−α

(
−1 +

α

1− α
(1− s)s−1

)
s

α
1−α

< 0 ⇔ cy(s)′ < 0 ⇔ s > α.

because u′(cy(s)) > 0 and thus us < 0 for s > α. If, in addition, condition (13) holds,
then there exists at least one solution s∗ ∈ (α, 1). Also notice that condition (13) holds if u
satisfies the Inada condition, because then lims→1−us =∞ and lims→1 gs <∞.

To establish uniqueness we further require that u′′ < 0 for all s ∈ (α, 1) so that −us is
upward sloping and continuous. Observe that

uss = u′′(cy)cy(s)′ + u′(cy)cy(s)′′ < 0 ⇔ εu′,c = −u
′′(cy)

u′(cy)
<
cy(s)′′

cy(s)′
= εcs,s

which limits the (positive) semi-elasticity of marginal utility εu′,c from above. For the
semi-elasticity of consumption εcs,s notice that we have already established that cy(s)′ < 0

for s ∈ (α, 1). We next show that for s ∈ (α, 1) also cy(s)′′ < 0 so that εcs,s > 0. To see
this, write

cy(s)′′ = ((1− α)(1− κ))
1

1−α
α

1− α
s

α
1−α−1

[
−2 + (1− s)2α− 1

1− α
s−1

]
and thus cy(s)′′ < 0 if

− 2 + (1− s)2α− 1

1− α
s−1 < 0 ⇔ s > 2α− 1

Before, we have shown that for s > α we have cy(s)′ < 0 and since α > 2α− 1 ⇔ α < 1

we know that s > α implies that cy(s)′′ < 0 and thus for s ∈ (α, 1) we get c
y(s)′′

cy(s)′
> 0. Also,

since by property (14) the function −us is continuous and upward sloping and since gs is
downward sloping we have that if s∗ ∈ (α, 1) exists, then sCE > s∗ implies that V ′∞(s) < 0.

Along the transition, recall that the consumption allocations for generation t is

cyt (st) = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1; st) = [α + κηt+1(1− α)] kαt+1.

6Specifically, we have assumed that gc > 0, gcc < 0. Observe from (16b) that co(s)′ > 0 so that gs > 0
and gss < 0.
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Thus, assuming a unique s∗ < sCE we obtain

∆Vt = u ((1− s∗)(1− κ)(1− α)kαt )− u
(
(1− sCE)(1− κ)(1− α)kα0

)︸ ︷︷ ︸
=∆V +

t

+

g
(
[α + κηt+1(1− α)] kαt+1; Ψ

)
− g ([α + κηt+1(1− α)] kα0 ; Ψ)︸ ︷︷ ︸

=∆V −t

and since ∂cyt
∂kt

> 0 as well as ∂cot+1

∂kt+1
> 0 the same arguments on the behavior of V +

t and V −t
along the transition as in the proof of Proposition 6 apply.

E.3.3 Implementation

Observe that the proof above does not say anything about implementation of the saving
rates though taxation of capital. The next proposition contains a fairly general implemen-
tation result for expected utility. Proposition 23 extends this result to EZW utility.

Proposition 4. If the utility function in both periods is of the HARA form,

u(c) =
1− γ
γ

(
ιc

1− γ
+ ξ

)γ
, (17)

with parameters ι > 0, ξ, γ, γ 6= 1 such that ιc
1−γ + ξ > 0, then in general equilibrium the

saving rate s is strictly decreasing in the tax rate τ and any s∗ ∈ (α, 1] can be implemented

by a unique (but typically time-dependent) tax rate τ ∗t+1.

Proof. Start from the Euler equation for a given period t aggregate wage wt = (1− α)kαt

u′ [(1− κ)wt(1− s(τt+1))] =

αβ(1−τt+1) ((1− κ)wt)
α−1 s(τt+1)α−1

∫
u′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] dΨ(η).

(18)
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Totally differentiate (18) to get

− (1− κ)wtu
′′ [(1− κ)wt(1− s(τt+1))]

ds(τt+1)

dτt+1

= αβ ((1− κ)wt)
α−1[

−s(τt+1)α−1 + (1− τt+1)(α− 1)s(τt+1)α−2ds(τt+1)

dτt+1

] ∫
u′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] dΨ(η)

+ α2β(1− τt+1) ((1− κ)wt)
2α−1 s(τt+1)2(α−1)ds(τt+1)

dτt+1

·

·
∫
u′′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] (α + (1− α)κη)dΨ(η).

Now use the notation

cy(s(τt+1)) = (1− κ)wt(1− s(τt+1))

co(s(τt+1), η) = (α + (1− α)κη) [(1− κ)wt]
α s(τt+1)α

and divide by (1− κ)wt to rewrite this further as

− u′′ [cy(s(τt+1))]
ds(τt+1)

dτt+1

= −αβ ((1− κ)wt)
α−2[

s(τt+1)α−1 + (1− τt+1)(1− α)s(τt+1)α−2ds(τt+1)

dτt+1

]
E [u′(co(s(τt+1), η))]

+ α2β(1− τt+1) ((1− κ)wt)
2(α−1) s(τt+1)2(α−1)ds(τt+1)

dτt+1

·

·
∫
u′′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] (α + (1− α)κη)dΨ(η).

Since u′ > 0 and u′′ < 0 ambiguity of implementation may come from the expression∫
u′′ [(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α] (α + (1− α)κη)dΨ(η). (19)

Before proceeding observe that without risk implementation is unambiguous since then

u′′ [(α + (1− α)κ) [(1− κ)w0]α s(τ)α] (α + (1− α)κ) < 0.
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With income risk, observe that with HARA utility (17) we have

u′ = ι

(
ιc

1− γ
+ ξ

)γ−1

, u′′ = −ι2
(

ιc

1− γ
+ ξ

)γ−2

and thus (19) becomes

−
∫
ι2
[

ι

1− γ
(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α + ξ

]γ−2

(α + (1− α)κη)dΨ(η)

= −ι2
∫ [(

ι

1− γ
(α + (1− α)κη) [(1− κ)wt]

α s(τt+1)α + ξ

)
(α + (1− α)κη)

1
γ−2

]γ−2

dΨ(η)

= −ι2
∫ [(

ι

1− γ
(α + (1− α)κη)

γ−1
γ−2 [(1− κ)wt]

α s(τt+1)α + ξ(α + (1− α)κη)
1

γ−2

)]γ−2

dΨ(η)

= Λ(s(τt+1); ι, ξ, α, κ, γ, η) < 0

and thus for HARA preferences defined in the proposition st and τt+1 are strictly negatively
related, implying that for any saving rate there exists a unique tax rate implementing this
saving rate as a competitive equilibrium.

E.3.4 Marginal Reforms

The next corollary studies marginal tax reforms rather than implementing the full Ramsey
equilibrium.

Corollary 3. Let Assumption 1 hold and assume that sCE > s∗. Implementing a saving

rate sCE − ε ≥ s∗ for small ε > 0 in all periods t ≥ 0 through a time-varying tax rate τt+1

yields a Pareto improvement.

Proof. Replace in the proof of Proposition 3 s∗ by sCE − ε ≥ s∗ to note that the same
arguments on monotone transitions of the gains and loss terms apply.

E.4 Savings Subsidy Does Not Induce Pareto Improvement

In this section we show, in contrast to the previous section, that even if sCE < s∗, imple-
menting the Ramsey (for θ = 1) saving rate s∗ through a savings subsidy τ ∗ < 0 does
not lead to a Pareto improving transition. We exploit the fact that in the first period of the
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transition the capital stock k1 = k0 is predetermined, and the capital stock in t = 2 satisfies

k2 = s(1− α)(1− κ)kα0

for any saving rate implemented by a given tax policy. Then we can calculate lifetime
utility of the first transition generation, as a function of an implemented saving rate s, as

V1(s) = ln ((1− s)(1− κ)(1− α)kα0 ) + β

∫
ln (α + κη2(1− α)) (s(1− α)(1− κ)kα0 )α dΨ(η)

= ln(1− s) + βα ln(s) + ln ((1− κ)(1− α)kα0 )

+ β

∫
ln (α + κη2(1− α)) ((1− α)(1− κ)kα0 )α dΨ(η)

and thus

V ′1(s) = − 1

1− s
+
αβ

s

V ′′1 (s) = − 1

(1− s)2
− αβ

s2
< 0.

Therefore V1(s) is strictly concave in s. Therefore, if V ′1(s = sCE) ≤ 0, then V (s =

sCE) > V (s) for all s > sCE. We have

V ′1(s = sCE) = − 1

1− sCE
+ αβ

1

sCE
≤ 0

⇔ sCE ≥ αβ

1 + αβ

which is satisfied, exploiting expression (11) for the optimal competitive equilibrium sav-
ing rate (with zero taxes). Thus not only is implementing τ ∗ < 0 not Pareto improving if
sCE < s∗, but in fact any policy reform that induces a saving rate in period 1 above the
competitive saving rate with zero taxes, sCE, will not result in a Pareto improvement, since
it makes the first generation strictly worse off.

F Endogenous Labor Supply and Labor Income Taxation

In this section we provide the details of the analysis of the model with endogenous labor
supply.
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F.1 Model Setup

As discussed in the main text, we assume households have lifetime utility defined over
consumption when young, and stochastic consumption and labor allocations when old
cyt , c

o
t+1(η), lot+1(η) given by

Vt = ln(cyt ) + β

∫ [
ln(cot+1(η)) + γ ln(1− lot+1(η))

]
dΨ(η), (20)

where γ > 0 is a parameter.7 The budget constraints of a typical generation now read as

cyt + at+1 = (1− κ)wt (21a)

cot+1(η) = (1− τt+1)Rt+1at+1 + κη(1− τ lt+1)wt+1l
o
t+1(η) + Tt+1, (21b)

where τ lt+1 is the proportional labor income tax rate. As before, tax revenues from capital
and labor income taxes on the old are rebated to them in a lump-sum fashion:

Tt+1 = τt+1Rt+1at+1 + τ lt+1κwt+1

∫
ηlot+1(η)dΨ(η). (22)

The production technology transforming capital and labor (Kt, Lt) into output and the
associated firm problem remains unchanged, and equilibrium in the labor market obtains if

Lt = 1− κ+ κ

∫
ηlot (η)dΨ(η). (23)

F.2 Definition of Competitive Equilibrium

Definition 1. For a given initial capital stockK0 and a given sequence of tax rates {(τ lt , τt)}
a competitive equilibrium is a sequence of allocations for households, {(cyt , at+1, c

o
t+1(η), lot+1(η))},

a sequence of allocations for firms, {(Kt, Lt)}, a sequence of factor prices {(Rt, wt)} and

a sequence of transfers {Tt} such that

1. for all t ≥ 0, given (τ lt+1, τt, Tt) and (wt, wt+1, Rt+1) the allocation (cyt , at+1, c
o
t+1(η), lot+1(η))

maximizes (1) subject to (21a) and (21b);

7The utility function of the initial old is similarly defined.
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2. given (τ l0, τ0, T0) and (w0, R0) the allocation (co0(η), lo0(η)) maximizes

V−1 =

∫
[ln(co0(η)) + γ(1− lo0(η))]dΨ(η) (24)

subject to

co0(η) = (1− τ0)R0a0 + κη(1− τ l0)w0l
o
0(η) + T0; (25)

3. For all t ≥ 0, factor prices satisfy

Rt = αKα−1
t L1−α

t (26a)

wt = (1− α)Kα
t L
−α
t ; (26b)

4. for all t ≥ 0, the government budget constraint is satisfied:

Tt = τtRtKt + τ ltκwt

∫
lot (η)ηdΨ(η); (27)

5. the markets for labor, capital and final goods clear in every period: for all t ≥ 0:

Lt = 1− κ+ κ

∫
lot (η)ηdΨ(η) (28)

Kt+1 = at+1 (29)

F (Kt, Lt) = cyt +

∫
cot (η)dΨ(η) +Kt+1. (30)

F.3 Analysis

We now show that the optimal saving rate the Ramsey government chooses is identical to
the one in Proposition 2, and is implemented with a tax on capital that is strictly increas-
ing in idiosyncratic labor productivity risk η and strictly decreasing in the social welfare
weights on future generations. The analysis proceeds in two steps, we first show that a
given sequence of private aggregate saving rates st = Kt+1

(1−κ)wt
∈ (0, 1) and aggregate la-

bor Lt ≥ 0 can be implemented by choice of a sequence of capital and labor income tax
rates (τt+1, τ

l
t ). This implies that the Ramsey government can directly choose sequences

{st, Lt} and then implement them as competitive equilibrium with proportional capital and
labor income taxes. Second, we show that the optimal Ramsey saving rate is identical to
the one with exogenous labor supply, and the capital tax rate implementing it has the same
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form as before.

F.3.1 Competitive Equilibrium for Given Tax Policy

First, we characterize the competitive equilibrium for a given sequence of capital and la-
bor income tax rates. We state the household optimality conditions, and then show how
to aggregate them, exploiting the market clearing conditions and the government budget
constraint in general equilibrium.

Optimal Household Decisions For given factor prices and tax policies, the household
makes a labor-leisure choice and a consumption savings choice. The next lemma charac-
terizes this choice.

Lemma 1. Let assumption 1 hold, and assume that the allocations are interior.8 Then the

optimal choice of the saving rate st = at+1

(1−κ)wt
and stochastic old-age labor supply and

consumption (lot+1(η), cot+1(η)) are given by

lot+1(η) = 1−
γcot+1(η)

κηwt+1(1− τ lt+1)
(31)

1 = β(1− τt+1)

∫  1− st
st(1− τt+1) +

κwt+1ηlot+1(η)(1−τ lt+1)

(1−κ)wtRt+1
+ Tt+1

(1−κ)wtRt+1

 dΨ(η)

(32)

cot+1(η) = (1− τt+1)Rt+1st(1− κ)wt + κη(1− τ lt+1)wt+1l
o
t+1(η) + Tt+1. (33)

General Equilibrium Now we aggregate the individual decisions and express aggregate
labor supply and the aggregate private saving rate as a function of the policy instruments.
Aggregate labor supply of the old, Lot , and thus total aggregate labor supply Lt are given
by

Lot =

∫
lot (η)ηdΨ(η)

Lt =1− κ+ κLot

8Consumption and leisure are strictly positive almost surely by the Inada conditions implied by log-utility.
However, labor supply might optimally be equal to zero for sufficiently low η.We will below state a sufficient
condition on the support of η such that labor supply is indeed interior η-almost surely.
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and factor prices are determined as

wt =(1− α)Kα
t L
−α
t

Rt =αKα−1
t L1−α

t .

Aggregate transfers are given by

Tt+1 = τt+1Rt+1Kt+1 + τ lt+1κwt+1L
o
t+1. (34)

Finally, the aggregate capital stock, the endogenous state variable in this model, evolves as
a function of the saving rate st = Kt+1

(1−κ)wt
= at+1

(1−κ)wt

Kt+1 = at+1 = st(1− κ)wt = st(1− κ)(1− α)Kα
t L
−α
t . (35)

Individual and Aggregate Labor Supply In order to obtain a tractable expression for
aggregate labor supply, first insert the budget constraint when old (33) into the optimality
condition for individual labor supply, equation (31). This delivers, after rearranging,

(1 + γ)(1− τ lt+1)ηlot+1(η) = η(1− τ lt+1)− γ [(1− τt+1)Rt+1st(1− κ)wt + Tt+1]

κwt+1

. (36)

Now we can aggregate both sides of this equation by integrating with respect to idiosyn-
cratic productivity shocks, to obtain

(1 + γ)Lot+1 = 1− γ [(1− τt+1)Rt+1st(1− κ)wt + Tt+1]

(1− τ lt+1)κwt+1

and exploiting the expression for aggregate wages, interest rates and transfers we obtain

(1 + γ)Lot+1 = 1−
γα
(
1− κ+ κLot+1

)
(1− τ lt+1)κ(1− α)

−
γτ lt+1L

o
t+1

(1− τ lt+1)

which yields aggregate equilibrium labor Lot+1 and thus Lt+1 solely as a function of the
labor income tax rate τ lt+1
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Lot+1(τ lt+1) =

∫
ηlot+1(η)dΨ(η) =

1− τ lt+1 −
γα(1−κ)
κ(1−α)

1− τ lt+1 + γ
1−α

(37a)

Lt+1(τ lt+1) = 1− κ+ κLot+1(τ lt+1) = 1− κ+ κ
1− τ lt+1 −

γα(1−κ)
κ(1−α)

1− τ lt+1 + γ
1−α

. (37b)

Crucially, aggregate equilibrium labor supply is independent of the saving rate and the tax
rate on capital shaping the dynamics of the economy, and exclusively depends on the labor
income tax rate when old.9 Define τ̄ lt+1 = κ(1−α)−γα(1−κ)

κ(1−α)
< 1. We have the following

Proposition 5. For any tax rate τ lt+1 ∈
(
−∞, τ̄ lt+1

)
aggregate labor supply is given by

equation (37b). Aggregate labor supply is strictly decreasing in the labor income tax rate

τ lt+1. Thus, for any aggregate labor supply Lot+1 ∈ (0, 1) there exists a unique labor income

tax rate τ lt+1 that implements this Lot+1 as part of a competitive equilibrium.

Note that the labor income tax rate implementing any positive labor supply of the old is
strictly less than 1. Optimal individual labor supply lot+1(η; τ lt+1) (see equation (38)) is only
a function of the labor income tax rate and the idiosyncratic shock. The fact that aggregate
labor supply is strictly decreasing in the labor income tax rate follows from the fact that

Lot =
1− τ lt −

γα(1−κ)
κ(1−α)

1− τ lt + γ
1−α

and thus, taking the derivative with respect to the labor income tax rate τ lt yields:

∂Lot
∂τ lt

=
−(1− τ lt + γ

1−α) + 1− τ lt −
γα(1−κ)
κ(1−α)

(1− τ lt + γ
1−α)2

=−
γ

1−α + γα(1−κ)
κ(1−α)

(1− τ lt + γ
1−α)2

< 0.

We also note that we can express individual labor supply exclusively in terms of in-
dividual labor productivity and labor income taxes, independent of the saving rate and

9We assume that the utility weight on leisure γ is sufficiently small and/or the productivity κ of the old
sufficiently large that the Ramsey government finds it optimal to implement positive aggregate labor supply
of the old. Otherwise old households do not work, and idiosyncratic risk trivially becomes irrelevant. A tax
rate τ lt+1 < τ̄ lt+1 insures this.
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independent of the tax rate on capital. Rewriting (36) yields

lot+1(η) =
1

(1− τ lt+1)(1 + γ)

(
1− τ lt+1 −

γαLt+1

ηκ(1− α)
−
γτ lt+1L

o
t+1

η

)
=

1

(1− τ lt+1)(1 + γ)

(
1− τ lt+1 −

γα(1− κ) + [α + (1− α)τ lt+1]γκLot+1

ηκ(1− α)

)
= lot+1(η; τ lt+1), (38)

where we note that Lot+1 = Lot+1(τ lt+1). We can now also state a condition to insure that
individuals find it optimal to supply positive labor even at the lowest productivity level η.
For this we need

η > γ

α (1− κ) +
[
α + (1− α)τ lt+1

]
κ

(
1−τ lt+1−

γα(1−κ)
κ(1−α)

1−τ lt+1+ γ
1−α

)
(1− τ lt+1)κ(1− α)

= Ξ(γ, τ lt+1). (39)

We note that since Ξ(γ = 0, τ lt+1) = 0, by continuity in γ for every τ lt+1 ∈ (−∞, 1) there
exists a small enough γ such that this condition is satisfied and labor supply is positive for
every possible productivity level. We therefore make

Assumption 2. The lower bound of the productivity shock η satisfies equation (39) for all

τ lt+1 ≤ τ̄ lt+1.

With this result in hand we can now proceed to obtain the competitive equilibrium
saving rate as in the benchmark model with exogenous labor supply.

The Aggregate Saving Rate We can now express the saving rate in (32) as a function of
the allocation of labor, which we have shown in the previous subsection just to depend on
the labor income tax rate τ lt+1. Using (32) and the expressions for wages, interest rates and
transfers in general equilibrium yields

1 = αβ(1−τt+1)

(
1− st
st

)∫  1

α + (1−α)κ

Lt+1(τ lt+1)

[
(1− τ lt+1)ηlot+1(η; τ lt+1) + τ lt+1L

o
t+1(τ lt+1)

]
 dΨ(η)

which gives the following equilibrium saving rate

st =
1

1 +
[
αβ(1− τt+1)Γ(α, κ; τ lt+1,Ψ)

]−1 = s(α, κ; τt+1, τ
l
t+1,Ψ), (40)
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where

Γ(α, κ; τ lt+1,Ψ) =

∫  1

α + (1−α)κ

Lt+1(τ lt+1)

[
(1− τ lt+1)ηlot+1(η; τ lt+1) + τ lt+1L

o
t+1(τ lt+1)

]
 dΨ(η)

(41)
completely summarizes the impact of idiosyncratic productivity and thus income risk on
the optimal saving decision. Note that the labor income tax rate affects the risk term Γ

through its impact on individual and aggregate labor supply. However, since for every
labor income tax rate τ lt+1 satisfying the restriction in proposition 5 the term Γ is a positive
constant, we immediately have the following

Proposition 6. For any labor income tax rate τ lt+1 ∈
(
−∞, κ(1−α)−γα(1−κ)

κ(1−α)

)
and any tax

rate on capital τt+1 ∈ (−∞, 1) the aggregate equilibrium saving rate st ∈ (0, 1) is given in

equation (40). Consequently, for any saving rate st ∈ (0, 1) and given a labor income tax

rate and associated labor allocation there exists a unique capital tax rate τt+1 ∈ (−∞, 1)

that implements this saving rate as part of a competitive equilibrium.

The previous two propositions demonstrate the sequential nature of solving for the com-
petitive equilibrium, given tax policy. In each period t ≥ 0, given a labor income tax rate
τ lt , we can solve for equilibrium labor supply (lot (η), Lot , Lt). Then, given this labor alloca-
tion, which in turn determines Γ(α, κ; τ lt+1,Ψ), and given a tax on capital τt+1, one solves
for the equilibrium saving rate st. Finally, the capital stock Kt and the saving rate st today
determine the aggregate capital stock in period t + 1. Thus, given an initial condition K0,

any aggregate allocation of labor and savings {Lt, st} and associated allocation of individ-
ual labor {lot (η)} and capital {Kt+1} in equation (35) can be implemented as a competitive
equilibrium through a suitable choice of labor income and capital tax rates {τ lt , τt+1}.

F.3.2 Optimal Ramsey Allocations and Tax Policy

The objective of the government is to maximize social welfare, as in equation (4), by choice
of capital taxes {τt}∞t=0 and labor taxes {τ lt}∞t=0 and where Vt is lifetime utility of generation
t in the competitive equilibrium associated with the sequence {τt, τ lt}∞t=0. From the previous
implementation result we know that the Ramsey government can, for any t ≥ 0, implement
any desired aggregate labor supply allocation Lot , Lt with an appropriate choice of labor
income taxes τ lt . Given these choices it can then implement any aggregate saving rate
st with an appropriate choice of τt+1. Note that since the initial old already made their
savings decisions and the revenue from the capital tax is lump-sum distributed to them,
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the tax rate τ0 is irrelevant for welfare. We now express expected lifetime utility of a given
generation directly in terms of aggregate allocations; the Ramsey government chooses these
allocations to maximize social welfare and implements these allocations as a competitive
equilibrium with taxes, as discussed above. Lifetime utility of generation t can be expressed
purely as a function of the beginning of the period capital stock, and the aggregate saving
rate and aggregate labor supply when young and when old:

Vt = V (Kt, st, L
o
t , L

o
t+1) = u((1− st)(1− κ) (1− α)Kα

t Lt(L
o
t )
−α) + β

∫
u
(
κw(st, L

o
t , L

o
t+1) ·[

ηlot+1(η, Lot+1)(1− τ lt+1(Lot+1)) + τ lt+1(Lot+1)Lot+1

]
+R(st, L

o
t , L

o
t+1)Kt+1(st, L

o
t ), l

o
t+1(η, Lot+1)

)
dΨ(η)

where the aggregate components are themselves given by

Lt(L
o
t ) = 1− κ+ κLot (42a)

Lt+1(Lot+1) = 1− κ+ κLot+1 (42b)

τ lt+1(Lot+1) =
κ(1− α− Lot+1(1 + γ − α))− γα(1− κ)

κ(1− α)(1− Lot+1)
(42c)

lot+1(η, Lot+1) =

(
1− τ lt+1(Lot+1)− γαLt+1(Lot+1)

ηκ(1−α)
− γτ lt+1L

o
t+1

η

)
(1− τ lt+1(Lot+1))(1 + γ)

(42d)

Kt+1(st, L
o
t ) = st(1− κ)(1− α)Kα

t Lt(L
o
t )
−α (42e)

w(st, L
o
t , L

o
t+1) = (1− α) [Kt+1(st, L

o
t )]

α Lt+1(Lot+1)−α (42f)

R(st, L
o
t , L

o
t+1) = α [Kt+1(st, L

o
t )]

α−1 Lt+1(Lot+1)1−α. (42g)

Similarly, remaining lifetime utility of the initial old (and already substituting out factor
prices) is given by

V−1 = V (K0, L
o
0) =

β

∫
u
(
κ(1− α)Kα

0 L0(Lo0)−α
[
ηlo0(η, Lo0)(1− τ l0(Lo0)) + τ l0(Lo0)Lo0

]
+ αKα

0 L0(Lo0)1−α, lo0(η, Lo0)
)
dΨ(η).

Exploiting the assumption of logarithmic utility in consumption and leisure, the objec-
tive of the Ramsey government (including the initial generation) can be written as
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W (K0) =
∞∑

t=−1

ωtVt

= ω−1β

∫ [
α log(K0)− α log(L0(Lo0)) + log(κ(1− α)[ηlo0(η, Lo0)(1− τ l0(Lo0)) + τ l0L

o
0] + αL0(Lo0))

+ γ log(1− lo0(η))
]
dΨ(η)

+

∞∑
t=0

ωt

[
log(1− st) + log(1− κ) + log(1− α) + α log(Kt)− α log(Lt(L

o
t ))

+ β

∫ (
α log(st) + α log(1− κ) + α log(1− α) + α2 log(Kt)− α2 log(Lt(L

o
t ))− α log(Lt+1((Lot+1)))

+ log[κ(1− α)(ηlot+1(η, (Lot+1))(1− τ lt+1((Lot+1))) + τ lt+1(Lot+1)Lot+1) + αLt+1(Lot+1)]

+ γ log(1− lot+1(η), Lot+1)

)
dΨ(η)

]
,

where the log-capital stock log(Kt) can be expressed as

log(Kt) = (log(1− α) + log(1− κ))

(
1− αt

1− α

)
+ αt log(K0)

+
t∑

τ=1

ατ−1 log(st−τ )−
t∑

τ=1

ατ−1 log(Lt−τ )

= logKt(K0, {sτ , Lτ}t−1
τ=0).

Thus we note that the objective function can be written purely in terms of the aggregate
allocations {st, Lot}∞t=0 and that it is additively separable in time between the savings rate
st on one hand and aggregate labor supply Lot on the other hand. This in turn will greatly
facilitate the characterization of the optimal Ramsey allocations.

Optimal Saving Rate Ignoring constants that are irrelevant for maximization with re-

spect to the savings rate st, this part W s(K0) of the social welfare function can be ex-
pressed as:

W s(K0) =
∞∑
t=0

ωt [log(1− st) + αβ log(st) + α(1 + αβ) log(Kt)]

=
∞∑
t=0

ωt

[
log(1− st) + log(st)

(
αβ + α (1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1

)]
.
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Taking first order conditions with respect to st and setting it to zero then immediately results
in the following Proposition 7, with the implementing capital tax rate directly implied by
equation (40).

Proposition 7. The optimal Ramsey saving rate with endogenous labor supply is given by

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt
αj−1

)−1 ∈ (0, 1). (43)

Furthermore, if we assume that relative social welfare weights are constant, ωt+1

ωt
= θ for

all t, then the optimal Ramsey saving rates in (43) are constant over time and given by

st = s =
α(β + θ)

1 + αβ
∈ (0, 1).

The optimal tax on capital implementing this saving rate as competitive equilibrium is

given by equation (40), or explicitly, as

1− τt+1 =
st

(1− st)αβΓ(α, κ; τ lt+1,Ψ)
, (44)

where Γ(α, κ; τ lt+1,Ψ) was defined in equation (41).

This result demonstrates that the optimal saving rate st chosen by the Ramsey planner is
independent of the optimal labor allocation and the labor income tax rates that implement
them, and identical to the one with exogenous labor supply. It again is independent of
the extent of idiosyncratic labor income risk. The optimal tax on capital τt+1 is strictly
increasing in income risk Γ, and depends on the optimal labor allocation determining this
risk, and thus on the optimal labor income tax rate that governs it.10 Crucially, since this
optimal rate is less than one, idiosyncratic labor income risk continues to be present, and the
precautionary savings channel and associated pecuniary externality remains operational.

F.4 Details of the Quantitative Analysis

To get a sense of the extent to which endogenous labor supply and labor income taxation
affects the optimal tax on capital quantitatively, we extend the calibration from Section 4.3

10The optimal allocation of labor Lt+1 is determined from a static first order condition of the Ramsey
problem which has no closed-form solution but is straightforward to solve numerically. Proposition 5 then
gives the associated optimal labor income tax rate implementing this labor allocation.
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to endogenous labor supply. Apart from the idiosyncratic productivity process we keep
all parameters the same, and we recalibrate the distribution of η, together with the new
leisure utility parameter γ in such a way that minimum, mean and log-variance of labor
income is the same as in the benchmark economy, and average hours worked are 1/3 of
total time. Table 1 contains the resulting parameter values, Figure 2 (in the main text)
plots the optimal capital and labor income tax rates against the (annualized) social discount
factor and Table 2 summarizes optimal policies for θ = 0.995 and θ = 1.

Table 1: Parameter Values: Endogenous Labor Supply

Parameter Exo. Labor Target End. Labor
γ Labor utility weight 0 E[l(η)] = 0.3333 0.73
η η support lower bound 0.05 ηl(η)/ηmedl(ηmed) = 3.35% 1.0
ση η-risk 0.81 V ar[log(ηl(η))] = 0.648 0.45
E[η] Mean idiosyn. shock 1 E[ηl(η)] = 1 2.68

Notes:. This table summarizes the endogenously calibrated parameters used for the quantitative analysis of
the model with endogenous labor supply. Parameters α, κ and the initial tax rate τk used in calibration are
given in Table 1.

Table 2: Annualized Interest Rate [in %] and Optimal Tax Rates [in %]

Interest Rate Optimal Capital Opt. Cap. Income
Parameter Configuration (Initial CE) Tax Rate τ ∗ Tax Rate τ k∗

Annualized Discount Factor θ = 0.995
V[log(ηl(η))]=0.6480 0.57% 5.11% 31.73%
V[log(ηl(η))]=0 0.80% -3.06% -19.00%

Annualized Discount Factor θ = 1.0
V[log(ηl(η))]=0.6480 0.58% -6.24% -63.80%
V[log(ηl(η))]=0 0.80% -14.90% -152.27%

Notes: This table shows the equilibrium interest rate at the initial competitive equilibrium, the optimal capital
tax rate τ∗, and the optimal capital income tax rate τk

∗
for the stochastic and the deterministic economy with

endogenous labor supply. Corresponding results for the model with exogenous labor supply were shown in
Table 2.
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G Intergenerational Redistribution

G.1 Pension System

G.1.1 Setup

The budget constraints of households under a time varying capital tax τt, a time varying
contribution rate to the pension system τ pt and a flat pension payment bt+1 in the two periods
of life are

cyt + at+1 = wt(1− κ)(1− τ pt )

cot+1(η) = at+1Rt+1(1− τt+1) + κηwt+1 + bt+1 + Tt+1.

We assume a PAYG pension system (balanced budget) so that

τ pt (1− κ)wt = bt.

Furthermore, while our formal analysis also encompasses the case of an unrestricted pay-
as-you-go pension system, we are mainly interested in a scenario where pension payments
are restricted to be positive (i.e., there is no reverse pension system). In this scenario the
constraint τ pt ≥ 0 applies.

Finally, as in the main text, the budget constraint of the capital tax system is

τtRtat = Tt.

G.1.2 Analysis

Define the net saving rate by

st =
at+1

(1− κ)wt(1− τ pt )
,

and note that with this definition of the saving rate we obtain the law of motion for capital
in general equilibrium as

kt+1 = at+1 = st(1− α)kαt (1− κ)(1− τ pt )
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and can thus express consumption in the two periods in general equilibrium as

cyt = (1− st)(1− τ pt )(1− α)(1− κ)kαt =
1− st
st

kt+1

cot+1 = kt+1αk
α−1
t+1 + kαt+1(1− α)

(
κη + τ pt+1(1− κ)

)
=
(
α + (1− α)

(
κη + τ pt+1 (1− κ)

))
kαt+1.

Using this in the private household Euler equation in competitive equilibrium with log
utility

1 = αβkα−1
t+1 (1− τt+1)

∫
cyt

cot+1(η)
dΨ(η)

yields

1 = αβkα−1
t+1 (1− τt+1)

∫ 1−st
st
kt+1(

α + (1− α)
(
κη + τ pt+1 (1− κ)

))
kαt+1

dΨ(η)

= αβ(1− τt+1)Γ(α, κ,Ψ; τ pt+1)
1− st
st

,

where the constant summarizing the impact of income risk is now given by

Γ(α, κ,Ψ; τ pt+1) =

∫ [
α + (1− α)

(
κη + τ pt+1 (1− κ)

)]−1
dΨ(η) (45)

and thus the private saving rate is only a function of the two tax rates and exogenous
parameters:

st(τt+1, τ
p
t+1) =

1

1 +
[
αβ(1− τt+1)Γ(α, κ,Ψ; τ pt+1)

]−1 . (46)

From equation (46) the following observation immediately follows:

Observation 1. The private saving rate in general equilibrium with a PAYG pension system

has the following properties:

1. ∂Γ(·;τpt+1)

∂τpt+1
> 0 and thus ∂s(τt+1,τ

p
t+1)

∂τpt+1
< 0.

2. ∂s(τt+1,τ
p
t+1)

∂τt+1
< 0

3. A mean-preserving spread in η increases Γ(·; τ pt+1) and thus s(τt+1, τ
p
t+1) by less the
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larger is τ pt+1.

The key implication of this result is that for given τ pt+1 we can implement any desired
saving rate st by choice of τt+1. The saving rate increases in income risk, but less so with
a larger pension system since the latter provides partial consumption insurance in old age,
and thus reduces the precautionary saving incentives of private households.

Thus the implementation results from the main paper extend unchanged to the case
with a PAYG pension system. If, in addition, the constraint τ pt+1 ≥ 0 is imposed and is
binding, then the implementation result from the main text applies unchanged (since the
PAYG system is not operative in that case).

G.1.3 The Ramsey Tax Problem

From the implementation result we observe that any saving rate st ∈ (0, 1) can be imple-
mented for a given contribution rate τ pt with some capital tax rate τt ∈ (−∞, 1). In light
of this, we define the Ramsey problem as one of directly choosing the saving rate st and
the contribution rate to the pension system τ pt , which constitutes a hybrid between a primal
and an indirect utility approach to optimal taxation.

The government’s social welfare function is

W = ω−1β

∫
ln(co0(η0))dΨ(η0) +

∞∑
t=0

ωt

[
ln(cyt ) + β

∫
ln(cot+1(ηt+1))dΨ(ηt+1)

]
(47)

which using the expressions

cyt = (1− st)(1− τ pt )(1− α)(1− κ)kαt

cot+1 =
(
α + (1− α)

(
κη + τ pt+1 (1− κ)

))
kαt+1

kt+1 = st(1− τ pt )(1− κ)(1− α)kαt
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can be rewritten as

W = Ξ + βω−1

∫
ln [(α + (1− α) (κη0 + τ p0 (1− κ)))] dΨ(η0)

+
∞∑
t=0

ωt [ln(1− st) + ln(1− τ pt ) + α ln(kt)]

+ β
∞∑
t=0

ωt

[∫
ln
[(
α + (1− α)

(
κηt+1 + τ pt+1 (1− κ)

))]
dΨ(ηt+1)

+α ln(1− τ pt ) + α ln(st) + α2 ln(kt)
]
.

Now follow the analogous steps to those in Appendix B to write the dynamics of the capital
stock as

ln(kt+1) = κt+1 +
t−1∑
j=0

αj
(
ln (st−j) + ln

(
1− τ pt−j

))
and collect terms to get

W = Ξ̃ + β
∞∑
t=0

ωt−1

∫
ln [(α + (1− α) (κη0 + τ pt (1− κ)))] dΨ(ηt)

+
∞∑
t=0

ωt

[
ln(1− st) + (ln(st) + ln(1− τ pt ))

(
αβ + α(1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1

)]
.

We directly observe from the above that the first-order condition with respect to st is
the same as derived in Appendix B and therefore

s∗t =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt
αj−1

)−1 . (48)

For τ pt we obtain from the respective first-order condition in all t = 0, . . . the function

f(τ pt ) = βΓ(τ p
∗

t )(1− α)(1− κ)− 1

1− τ pt
ωt
ωt−1

(
αβ + α (1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1

)
(49)

which since Γ(τ pt ) > 0 is increasing in τ pt and since 1
1−τpt

is convex and upward sloping
in τ pt with limτpt→1

1
1−τpt

=∞ and limτpt→−∞
1

1−τpt
= 0 implicitly defines the optimal τ p

∗

t ∈
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(−∞, 1). Furthermore, since Γ(τ pt ) is increasing in risk for a given τ pt we find that τ p∗ is
increasing in risk (but need not be positive).

Furthermore, we know from (46), evaluated at the optimal saving rate s∗t that the optimal
capital tax rate required to implement s∗t is given by

τt+1(s∗t , τ
p∗

t+1) = 1− s∗t
αβ(1− s∗t )Γ(τ p

∗

t+1)
. (50)

Holding the contribution rate to the pension system constant, the optimal τ ∗t+1 is in-
creasing in risk. However, to characterize the complete response of the capital tax rate to
income risk we have to take into account that the contribution rate to the pension system
also rises, reducing overall second period income risk and thus precautionary saving (and
therefore the need to tax capital income). Introducing the notation that an increase of risk
is measured by an increase of the variance σ2

η of η we therefore must evaluate the total
derivative:11

∂τt+1

∂σ2
η

=
s∗t

αβ(1− s∗t )Γ(τ p
∗

t+1)2

∂Γ(τ pt+1,Ψ)

∂σ2
η︸ ︷︷ ︸

>0

+
∂Γ(τ pt+1,Ψ)

∂τ pt+1︸ ︷︷ ︸
<0

∂τ pt+1(Ψ)

∂σ2
η︸ ︷︷ ︸

>0

 . (51)

We next show that ∂τt+1

∂σ2
η

> 0. From the first-order condition (49) we note that by the

implicit function theorem dτpt+1

dσ2
η

= − ∂f(·)/∂σ2
η

∂f(·)/∂τpt+1
with the partial derivatives

∂f(·)
∂σ2

η

= β(1− α)(1− κ)
∂Γ(τ pt+1)

∂σ2
> 0

∂f(·)
∂τ pt+1

= −

(
ωt
ωt−1

(
αβ + α (1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1

)
1

(1− τ p)2
− β(1− α)(1− κ)

∂Γ(τ pt+1)

∂τ pt+1

)
< 0.

We thus find (as we had already argued informally above) that the optimal social security

11In Appendix K.2 we show that the notion of an increase in income risk (mean-preserving spread in the
distribution of η) is equivalent to an increase in the variance of η to a second order approximation of the
integral Γ. Here expressing income risk in terms of the variance is simply a matter of notation, and stands in
for a mean-preserving spread in η.
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contribution rate is strictly increasing in income risk:

dτ pt+1

dσ2
η

=
∂Γ/∂σ2

η

ωt
ωt−1

αβ+α(1+αβ)
∑∞
j=1

ωt+j
ωt

αj−1

β(1−κ)(1−α)
1

(1−τp)2 − ∂Γ(τ pt+1)/∂τ pt+1

> 0

We now use this result to sign the overall effect of income risk on the optimal capital tax
rate. For this, note that

∂Γ(τ pt+1,Ψ)

∂τ pt+1

∂τ pt+1(Ψ)

∂σ2
η

=
∂Γ/∂σ2

η

ωt
ωt−1

αβ+α(1+αβ)
∑∞
j=1

ωt+j
ωt

αj−1

β(1−κ)(1−α)
1

(1−τp)2
1

∂Γ(τpt+1)/∂τpt+1
− 1

and we can rewrite (51) as

∂τ

∂σ2
η

=
s∗t

αβ(1− s∗t )Γ(τ p
∗

t+1)2

∂Γ(τ pt+1,Ψ)

∂σ2
η

·1− 1

1− ωt
ωt−1

(
αβ+α(1+αβ)

∑∞
j=1

ωt+j
ωt

αj−1
)

β(1−κ)(1−α)
1

(1−τp)2
1

∂Γ(τpt+1)/∂τpt+1


and since ∂Γ

∂τp
< 0 we obtain

1− ωt
ωt−1

(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt
αj−1

)
β(1− κ)(1− α)

1

(1− τ p)2

1

∂Γ(τ pt+1)/∂τ pt+1

> 1

⇔ 1− 1

1− ωt
ωt−1

(
αβ+α(1+αβ)

∑∞
j=1

ωt+j
ωt

αj−1
)

β(1−κ)(1−α)
1

(1−τp)2
1

∂Γ(τpt+1)/∂τpt+1

> 0

⇔ ∂τ

∂σ2
η

> 0.

Therefore, the direct effect of a marginal increase of income risk on households savings
in competitive equilibrium dominates the indirect effect from a reduction of consumption
risk due to an increase of the optimal social security contribution and benefit system. The
mitigation of the additional income risk through a marginal increase of the social security
contribution rate τ pt+1 is not strong enough to offset the effect of the marginal increase of
risk. Intuitively, the Ramsey government, when optimally determining the social security
contribution rate, has two motives. First, it aims at inter-generational redistribution. Sec-
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ond, it aims at reducing the direct effect of income risk. Since it has these two motives, it
will not be optimal for the Ramsey government to completely offset a marginal increase of
income risk so that Γ(τ pt+1; Ψ) increases even after the optimal adjustment of τ pt+1. Since
the household saving rate in competitive equilibrium therefore increases due to the precau-
tionary saving motive and since the Ramsey government aims at implementing a constant
saving rate in order to offset the negative pecuniary externality from that increase of risk—
just as in our model from the main text—the capital tax rate has to increase with income
risk in order to implement that constant saving rate.

Finally, notice that with geometric discounting of the government ωt = θt we get

∞∑
j=1

ωt+j
ωt

αj−1 =
θ

1− αθ

and thus τ p
∗

t = τ p
∗
, s∗t = s∗ and τ ∗t+1 = τ ∗ for all t. We have the following:

Proposition 8. The optimal saving rate s∗t is independent of risk and the optimal pension

contribution rate τ p
∗

t+1 and the optimal capital tax rate τ ∗t+1 are strictly increasing in id-

iosyncratic income risk. If, in addition, ωt = θt then s∗t = α(β+θ)
1+αβ

, τ p
∗

t = τ p
∗

and τ ∗t+1 = τ ∗

for all t = 0, . . . ,∞.

G.1.4 Ramsey Tax Problem in Steady State

We next aim to relate results in the pension system to those stated in Proposition 4 and thus
from now on focus on maximizing steady state utility where ωt = θ = 1. First, consider
the deterministic economy. In this case the optimal pension contribution rate solves

1 + αβ

1− α
1

1− τ p
=

β(1− α)(1− κ)

α + (1− α) (κ+ τ p(1− κ))
. (52)

Solving this equation for the optimal contribution rate under certainty (denoted by Ψ = Ψ̄)
delivers

τ p
∗
(Ψ̄) =

β
1+β
− α

1−α

1− κ
− κ

1− κ
. (53)
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The optimal capital tax rate is determined from our implementation result, equation (46):

1

αβΓ(τ p∗(Ψ̄), Ψ̄)

s∗

1− s∗
= 1− τ ∗(Ψ̄). (54)

We have

1

Γ(τ p∗(Ψ̄), Ψ̄)
= α + (1− α)

(
κ+ (1− κ)τ p

∗
(Ψ̄)
)

=
(1− α)β

1 + β
.

Using this result and the expression for s∗ in (54) we obtain for the optimal tax rate on
capital τ ∗(Ψ̄) = 0. The associated steady state capital stock is

k∗(Ψ̄) =
(
s∗(1− τ p∗(Ψ̄))(1− α)(1− κ)

) 1
1−α .

Using the expressions for s∗ and τ p
∗
(Ψ̄) in the above expressions immediately implies

that s∗ · (1 − τ p
∗
Ψ̄) = sGR and k∗(Ψ̄) = kGR. Furthermore, recall from Corollary 1 of

Appendix E that for θ = 1 and for a Pareto weight of ω−1 = 1 on the initial old generation,
the social planner maximizing steady state utility implements the saving rate sGR along all
periods of the transition. Therefore the Ramsey government setting s∗ and τ p∗(Ψ̄) from
period 0 onward implements the socially optimal allocation. We summarize these results
in the next

Proposition 9. In the deterministic economy, for θ = 1 and ω−1 = 1, setting the optimal

tax rates maximizing steady state utility

τ p
∗
(Ψ̄) =

β
1+β
− α

1−α

1− κ
− κ

1− κ
and τ ∗(Ψ̄) = 0 (55)

in period 0 and holding them constant induces a transition path that implements the social

optimum, with the golden rule saving rate sGR = α
(1−κ)(1−α)

. The economy converges

monotonically to the golden rule steady state capital stock k∗ = kGR = α
1

1−α .

We also observe from the above that if the initial deterministic laissez-faire economy
has a capital stock below the golden rule, kCE0 < kGR, then the optimal long-run steady
state welfare maximizing social security contribution rate is negative. In contrast, if the
competitive equilibrium capital stock is above the golden rule, kCE0 > kGR, then the opti-
mal contribution rate is positive.

Since in the deterministic economy the Ramsey government implements the golden rule
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capital stock, since the optimal Ramsey net saving rate s∗ is independent of income risk
and since the optimal contribution rate τ p∗ to the pension system is strictly increasing in
income risk we have the following

Corollary 4. In the economy where η is risky, the optimal Ramsey long run capital stock

satisfies k∗ < kGR.

Related to Proposition 4 in the main text, we now establish that there is a threshold
risk level such that for risk above that threshold we have τ p∗ > 0, and for risk below the
threshold, τ p∗ < 0. That threshold lies in the intermediate risk range of Proposition 4.

To see this, recall that we have established that without income risk τ p∗(Ψ̄) implements
the golden rule capital stock, and the associated optimal tax on capital is τ ∗ = 0. Since
by the assumption on parameters maintained in Proposition 4 the laissez-faire competitive
equilibrium capital stock is below the golden rule, k(Ψ̄) < kGR, implementing the golden
rule capital stock without income risk requires τ p∗(Ψ̄) < 0. Thus the starting point is the
economy without risk and with optimal policy τ p∗ < 0, τ ∗ = 0. Now increase income risk.

We have established above that both τ p∗ and τ ∗ are strictly increasing in income risk.
Thus there exists some threshold risk level Γ̂ for which τ p∗ = 0. Recall that the first order
condition for τ p (see equation (49)) is

1 + αβ

1− α
1

1− τ p
= β(1− α)(1− κ)Γ(τ p).

which for τ p∗ = 0 defines the risk threshold Γ̂ explicitly as

Γ̂ =
1 + αβ

β(1− α)2(1− κ)
(56)

To show that this threshold Γ̂ lies in the intermediate risk interval of Proposition 4,
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(
1+β

(1−α)β
, 1

β(1−α− 1
Γ̄)

)
, first investigate the lower bound of the interval. Notice that

Γ̂ >
1 + β

(1− α)β

⇔ 1 + αβ

β(1− α)2(1− κ)
>

1 + β

(1− α)β

⇔ 1 + αβ

(1− α)(1− κ)
> 1 + β

⇔ sGR =
α

(1− α)(1− κ)
>
α(1 + β)

1 + αβ
= s∗

and note that sGR is defined as a gross saving rate whereas s∗ is defined as a net saving rate.
However, for τ p∗ = 0, the gross and the net saving rates are identical. The inequality above
follows from the proof of proposition 4: For the intermediate risk case we established there
that s∗ < sGR, a result which carries over to the current analysis of social security as long
as τ p∗ = 0.

Now consider the upper bound. Notice that

Γ̂ <
1

β
(
1− α− 1

Γ̄

)
⇔ 1 + αβ

β(1− α)2(1− κ)
<

1

β (1− α− (κ(1− α) + α))

⇔ 1 + αβ

(1− α)2(1− κ)
<

1

(1− α)(1− κ)− α

⇔ 1

(1− α)(1− κ)
<

1

(1 + αβ)
(
(1− κ)− α

1−α

) ,
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and since sGR = α
(1−α)(1−κ)

< 1 ⇔ (1− κ)− α
1−α > 0 we further get

⇔ (1− α)(1− κ) > (1 + αβ)

(
(1− κ)− α

1− α

)
⇔ (1− α)(1− κ) > (1 + αβ)(1− κ)− α(1 + αβ)

1− α

⇔ (1− κ)− α(1− κ) > (1− κ) + αβ(1− κ)− α(1 + αβ)

1− α

⇔ α(1 + αβ)

1− α
> αβ(1− κ) + α(1− κ)

⇔ sGR =
α

(1− α)(1− κ)
>
α(1 + β)

(1 + αβ)
= s∗

and again the above inequality follows from proposition 4. Therefore the threshold satisfies

Γ̂ ∈
(

1+β
(1−α)β

, 1

β(1−α− 1
Γ̄)

)
, that is, lies in the intermediate risk interval of proposition 4 in

the main text. With this characterization of Γ̂ we can state the next proposition, which
serves as a generalization of proposition 4. It characterizes the jointly optimal pension
contribution and capital tax rate, and also covers the case when a nonnegativity constraint
on pension contributions and thus pension benefits is imposed.

Proposition 10. Let θ = 1 so that the Ramsey government maximizes steady state welfare.

Denote by sCE the saving rate in the laissez-faire competitive equilibrium and by sGR the

gross saving rate that implements the golden rule capital stock. Further denote by s∗ the

optimal Ramsey net saving rate, s∗ = a∗

w(1−τp∗ )
, where τ p

∗
is the optimal Ramsey pension

contribution rate. Finally denote by τ ∗ the optimal Ramsey capital tax rate.

1. Let income risk be large, Γ > 1

β((1−α)− 1
Γ̄)

. Then sCE > sGR > s∗, and τ ∗ > 0,

and τ p
∗
> 0.

2. Let income risk be fairly large, Γ ∈
(

1+αβ
β(1−α)2(1−κ)

, 1

β((1−α)− 1
Γ̄)

)
. Then sCE < sGR

and τ ∗ > 0, and τ p
∗
> 0, and thus s∗ < sCE .

3. Let income risk be fairly small, Γ ∈
(

1+β
(1−α)β

, 1+αβ
β(1−α)2(1−κ)

)
. Then sCE < sGR

and τ ∗ > 0. If the social security contribution rate is unrestricted, then τ p
∗
< 0.

If it is subject to a nonnegativity constraint, then τ p
∗

= 0 and s∗ < sCE .

4. Let income risk be small, Γ ∈
(

Γ̄, 1+β
(1−α)β

)
. Then sCE < sGR. If the social security

contribution rate is unrestricted, then τ ∗ > 0 and τ p
∗
< 0. If it is subject to a
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nonnegativity constraint, then τ ∗ < 0, τ p
∗

= 0, and s∗ < sCE .

The interesting interval is thus the interval where risk is fairly small, where the optimal
capital tax is positive but the pension contribution rate is negative (or zero, if constrained to
be nonnegative). To provide some intuition for this finding, notice that the optimal pension
contribution rate turns positive in the stochastic economy at a level of risk that is below the
risk level where the laissez-faire competitive equilibrium economy’s capital stock is equal
to the golden rule capital stock because the pension system serves two purposes: it provides
optimal intergenerational redistribution and it partially insures against idiosyncratic income
risk. This dual role can directly be inferred from the first-order condition (49). Given the
contribution rate and the implied remaining idiosyncratic consumption risk (which can-
not be fully eliminated by social security benefits), the capital income tax implements the
optimal Ramsey saving rate, offsetting the negative pecuniary externality from increasing
saving rates induced by income risk of households, exactly as in the model without social
security. If the pension contribution rate is restricted to zero, then the tax on capital also
targets inter-generational redistribution, as in the benchmark model. So why does the opti-
mal tax rate on capital turn positive for a lower threshold of risk with, compared to without
social security? Without social security as an inter-generational redistribution instrument,
capital taxation partially fills the role of providing inter-generational redistribution in ad-
dition to addressing the pecuniary externality, and in the case the competitive equilibrium
capital stock is below the golden rule, this force pushes down the tax on capital (to en-
courage capital accumulation) relative to the case where social security tackles the desired
intergenerational redistribution (through a negative contribution rate, if permitted).

Finally, denote by k∗(τ ∗, τ p = 0) the optimal Ramsey steady state capital stock in the
economy without a pension system and by k∗(τ ∗, τ p∗) the steady state capital stock in the
economy with a pension system. From the optimal saving rate and the optimal pension
contribution rate characterized in Proposition 10 we obtain the next

Corollary 5. The optimal long run capital stock in the economy with and the economy

without social security are related as follows:

1. For large income risk, Γ > 1+αβ
β(1−α)2(1−κ)

, we have k∗(τ ∗, τ p
∗
) < k∗(τ ∗, τ p = 0)

2. For small income risk, Γ ≤ 1+αβ
β(1−α)2(1−κ)

, we have k∗(τ ∗, τ p
∗
) ≥ k∗(τ ∗, τ p = 0)

This result immediately follows from the fact that the optimal net savings rates sat-
isfy s∗(τ ∗, τ p = 0) = s∗(τ ∗, τ p

∗
) and the steady state capital stock follows from the saving
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rate as k∗ = (s∗(1− τ p)(1− κ)(1− α))
1

1−α . For Γ > 1+αβ
β(1−α)2(1−κ)

, proposition 10 im-
plies that τ p∗ > 0 (and thus k∗(τ ∗, τ p∗) < k∗(τ ∗, τ p = 0)), and for Γ < 1+αβ

β(1−α)2(1−κ)
we

have τ p∗ ≤ 0 (and thus k∗(τ ∗, τ p∗) ≥ k∗(τ ∗, τ p = 0)) where the equality is strict if the
constraint τ p∗ ≥ 0 applies.

Transition Under Optimal Steady State Policy Under the optimal long-run steady state
welfare maximizing policy τ ∗, τ p∗ implemented in period 0, the economy converges to the
long steady state with the dynamics of the capital stock along the transition given by

kt+1 = s∗(1− τ p∗)(1− κ)(1− α)kαt

and transfers to the initial old generation of

b0 = τ p
∗
(1− κ)(1− α)kα0

so that initial consumption of the old is

co0 = a0R0 + κηw0 + b0

= k0αk
α−1
0 + κη(1− α)kα0 + τ p

∗
(1− κ)(1− α)kα0

=
(
α + (1− α)

(
κη + τ p

∗
(1− κ)

))
kα0 .

G.1.5 Illustration

Panels (a) and (b) of Figure 1 illustrate Proposition 10 by plotting the optimal social security
contribution rate and the optimal capital tax rate against the extent of income risk. It does
so both for the case in which there is a nonnegativity constraint on τ p and the case where
the social security contribution rate is unconstrained. Panels (c) and (d) in the figure show
the policy instruments for optimal government debt to which we turn in Section G.2.

Panels (d) and (b) first demonstrate that both the social security contribution rate and
the capital tax rate are increasing in income risk, strictly so for τ ∗ and also for τ p∗ unless
the latter is constrained to be nonnegative, in which case τ p∗ = 0 if income risk is small,
see Panel (b). The vertical lines separate the x-axis into the four intervals characterized
in proposition 10. In the last two intervals (income risk fairly large and large), both tax
rates are positive, strictly increasing in risk and the nonnegativity constraint on τ p is not
binding. Below the threshold associated with Γ̂ the payroll tax is either constrained at zero
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and the tax on capital is rising in income risk and turns from negative to positive at the first
threshold characterized in the original proposition 4. Alternatively, there is no constraint, in
which case τ ∗ is unambiguously positive and rising in income risk, and τ p∗ is also strictly
increasing in income risk but negative for small and fairly small (in the nomenclature of
proposition 10) income risk. Finally, we observe that the impact of increased income risk
on the tax rate on capital is smaller when the social security contribution rate is free to
adjust (i.e. can be negative) than when it is constrained to be nonnegative, see the respective
slopes of the two lines.

G.2 Equivalence of Social Security and Government Debt

In this subsection we establish equivalence of the optimal Ramsey allocations for a general
social discount function ω when the government has assess to a PAYG social security sys-
tem analyzed in the previous section, and when, alternatively, it has access to government
debt. We first characterize the policy instruments and allocations in the economy with debt
and subsequently prove the equivalence by showing that a given allocation implemented by
the pension-taxation policy can be implemented by the debt-taxation policy and vice-versa,
and by arguing that the solution to the Ramsey maximization problem is unique.

G.2.1 The Economy with Government Debt

In period 0 the initial government debt position in the laissez-faire competitive equilibrium
is assumed to be b0 = 0. The government then pays transfers Z0 to the initial old house-
holds and finances these transfers by issuing government debt b1. In all other periods, the
government finances transfers to the old of Zt with government debt, in addition to the
transfers Tt financed by capital income taxes. Thus, the government budget constraint is,
in each period,

bt+1 =

Z0 for t = 0

Rtbt + Tt − τtRtat + Zt = Rtbt + Zt for t > 0,

where we maintain the assumption from the benchmark model that the government sets
transfers Tt equal to revenues from capital taxation, Tt = τtRtat. The household budget
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Figure 1: Optimal Tax on Capital, Optimal Pension Contributions & Optimal Debt Instru-
ments

(a) Optimal Capital Taxes τ∗
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(b) Optimal Pension Contributions τp
∗
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(c) Optimal Transfer Ratios ξ∗
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(d) Optimal Debt to Capital Ratios υ∗
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Notes: Panel (a) shows the optimal capital income tax τ∗, Panel (b) the optimal pension contribution rate τp
∗
,

Panel (c) the optimal transfer to wage ratio ξ∗ (on a different scale than the other panels), and Panel (d) the
optimal debt to capital ratio υ∗ as a function of income risk, measured by the standard deviation, σln η . Solid
blue lines are for the unconstrained solution, red dashed lines for the constrained solution with τp

∗ ≥ 0,
respectively υ∗ ≥ 0. The vertical lines separate the four risk intervals characterized in Proposition 10.

constraints in both periods of life read as

cyt + at+1 = (1− κ)wt

cot = atRt(1− τt) + κηwt + Tt + Zt
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and equilibrium in the asset market now requires that private assets equal the capital stock
and the stock of outstanding government debt:

at = kt + bt.

G.2.2 Analysis

Define the gross saving rate as

s̃t =
at+1

(1− κ)wt
.

Also define the ratio of government debt to the capital stock as υt = bt
kt

. With this definition
the law of motion of the capital stock in general equilibrium can be derived from

at+1 = s̃t(1− α)(1− κ)kαt = kt+1 + bt+1 = (1 + υt+1)kt+1

as

kt+1 =
s̃t

1 + υt+1

(1− α)(1− κ)kαt . (57)

Finally, define the transfer rate ξt = Zt
(1−κ)(1−α)kαt

and use it in the government budget
constraint to obtain an alternative representation of the law of motion of the capital stock:

bt+1 = btRt + Zt

= btαk
α−1
t + ξt(1− κ)(1− α)kαt

⇔ υt+1kt+1 = [αυt + ξt(1− κ)(1− α)] kαt

⇔ kt+1 =

[
α
υt
υt+1

+
ξt
υt+1

(1− κ)(1− α)

]
kαt . (58)

51



Comparing (57) to (58) gives the law of motion for the debt to capital ratio υt+1 = bt+1

kt+1
as

a function of υt, ξt, s̃t:

s̃t
1 + υt+1

(1− κ)(1− α) = α
υt
υt+1

+
ξt
υt+1

(1− κ)(1− α)

⇔ υt+1

1 + υt+1

=
1

s̃t

(
ξt +

α

(1− κ)(1− α)
υt

)
⇔ υt+1 =

ξt + α
(1−κ)(1−α)

υt

s̃t −
(
ξt + α

(1−κ)(1−α)
υt

) (59)

Finally, turn to the solution of the household model. Using (57) we can rewrite consumption
of young and old households as

cyt = (1− s̃t)(1− α)(1− κ)kαt =
1− s̃t
s̃t

(1 + υt+1)kt+1

cot+1 =

[
α + (1− α)

(
κη + (1− κ)

(
ξt+1 +

αυt+1

(1− α)(1− κ)

))]
kαt+1.

Using this in the competitive equilibrium household Euler equation with log utility

1 = αβkα−1
t+1 (1− τt+1)

∫
cyt

cot+1(η)
dΨ(η)

yields

1 = αβkα−1
t+1 (1− τt+1)

∫ 1−s̃t
s̃t

(1 + υt+1)kt+1(
α + (1− α)

(
κη +

(
ξt+1 + αυt+1

(1−α)(1−κ)

)))
kαt+1

dΨ(η)

= αβ(1− τt+1)(1 + υt+1)Γ̂(α, κ,Ψ; ξt+1, υt+1)
1− s̃t
s̃t

,

where the constant summarizing the impact of income risk is now given by

Γ(α, κ,Ψ; ξt+1, υt+1) =

∫ [
α + (1− α)

(
κη +

(
ξt+1 +

αυt+1

(1− α)(1− κ)

))]−1

dΨ(η)

(60)
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and thus the private saving rate is a function of the capital tax rate, the transfer rate and the
ratio of debt to the capital stock as well as exogenous parameters:

s̃t(τt+1, υt+1) =
1

1 + [αβ(1− τt+1)(1 + υt+1)Γ(α, κ,Ψ; ξt+1, υt+1)]−1 . (61)

Therefore, the implementation result for the tax rate on capital now takes the following
form: given the period t debt to capital ratio υt and period t choices of the government ξt
and a saving rate s̃t, we obtain υt+1 from equation (59) and can thus compute the tax
rate τt+1 implementing the private saving in competitive equilibrium from equation (61).

G.2.3 Proof of Equivalence

We first establish that a given allocation implemented by policy instruments of a pension-
taxation policy can equivalently be implemented with policy instruments of a debt-taxation
policy. Likewise we show that a given allocation implemented by policy instruments of
a debt-taxation policy can be implemented with policy instruments of a pension-taxation
policy. Formally, this equivalence is stated in the next

Proposition 11. 1. Consider an allocation {cyt , cot , kt+1}∞t=0 implemented with a pension-

taxation policy {τ pt , τt}∞t=0 with associated saving rate {st}∞t=0. The same allocation

can be implemented by a debt-taxation policy {ξt, τt}∞t=0 with associated saving rate

and debt to capital ratio {s̃t, υt+1}∞t=0.

2. Consider an allocation {cyt , cot , kt+1}∞t=0 implemented with a debt-taxation policy {ξt, τt}∞t=0

with associated saving rate and debt to capital ratio {s̃t, υt+1}∞t=0. The same allo-

cation can be implemented by a pension-taxation policy {τ pt , τt}∞t=0 with associated

saving rate {st}∞t=0.

Proof. Recall that the allocations and their dependency on policy instruments in the debt-
taxation policy are given by

cyt = (1− s̃t)(1− α)(1− κ)kαt (62a)

cot =

[
α + (1− α)

(
κη + (1− κ)

(
ξt +

αυt
(1− α)(1− κ)

))]
kαt (62b)

kt+1 =
s̃t

1 + υt+1

(1− α)(1− κ)kαt (62c)
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whereas in the pension-taxation policy they are given by

cyt = (1− st)(1− τ pt )(1− α)(1− κ)kαt (63a)

cot = (α + (1− α) (κη + (1− κ) τ pt )) kαt (63b)

kt+1 = st(1− τ pt )(1− κ)(1− α)kαt . (63c)

1. To establish part 1 of the proposition consider the following forward iteration in time
from t = 0, . . . ,∞, starting at k0, υ0 = 0. In any period t ≥ 0 for a given kt, υt:

(a) From (62b) and (63b) the consumption allocation of the period t-old imple-
mented by a pension-taxation policy can be equivalently implemented by a
debt-taxation policy through

ξt = τ p
∗

t −
αυ∗t

(1− κ)(1− α)
(64)

which for t = 0 gives ξ0 = τ p0 .

(b) From (62a) and (63a) the consumption allocation of the period t young im-
plemented by a pension-taxation policy can be equivalently implemented by a
debt-taxation policy through:

s̃t = st + τ pt (1− st). (65)

(c) Equivalence implies a path of government debt. In particular, this path can be
inferred from the pension-taxation policy by using (64) in (59) to get

υt+1 =
1

st

(
1
τpt
− 1
) . (66)

(d) Finally, notice from the households’ first-order condition that with substitu-
tions (64)-(66) we obtain
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1 = βα(1− τt+1)
1− s̃t
s̃t

(1 + υt+1)

·
∫

1

α + (1− α)
(
κη + (1− κ)

(
ξt+1 + υt+1

α
(1−α)(1−κ)

))dΨ(η)

= βα(1− τt+1)
1− s̃t+1

s̃t+1

(1 + υt+1)Γ(τ pt+1)

= βα(1− τt+1)
1− st+1

st+1

Γ(τ pt+1) (67)

2. To establish part 2 of the proposition we proceed analogously by inverting (65) to
obtain τ pt , by inverting (64) to obtain st, and by using st, τ

p
t+1 in (67) to obtain τt+1.

Finally, we can verify that the evolution of the capital stock is the same under both
policies by comparing equations (62c) and (63c) to obtain

s̃t
1 + υt+1

= st(1− τ pt )

⇔ υt+1 =
s̃t

st(1− τ pt )
− 1 =

st(1− τ pt ) + τ pt
st(1− τ pt )

− 1 =
τ pt

st(1− τ pt )
,

which is the same as (66).
Therefore, we have thus shown that the same set of allocations can be implemented

by either of the two policy instruments. Furthermore, since maximizing the strictly con-
cave objective function (47) subject to either the linear constraints (62) or the linear con-
straints (63) are convex maximization problems, the respective solutions are unique. Thus,
the optimal allocation implemented by the one policy (social security and capital taxes) can
be implemented by the respective other policy (government debt and capital taxes). �

G.2.4 Characterization of the Optimal Ramsey Debt-Taxation Policy

We now want to characterize the optimal debt-taxation policy ξ∗t , τ
∗
t with associated optimal

saving rate and optimal debt to capital ratio s̃∗t , υ
∗
t+1. Observe from (65) and (66) that υ∗t+1

and s̃∗t are increasing in income risk, because τ p
∗

t is increasing in income risk and because s∗t
is constant in income risk. As a consequence, we see from (64) that it is ambiguous how ξ∗t
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varies with income risk. Also observe from (66) that υ∗t+1 R 0 if τ p
∗

t R 0 and therefore the
qualitative behavior of debt is the same as of the pension payments.

Suppose next that the Ramsey government’s discount function is geometric so that ωt =

θt for some θ ∈ (0, 1]. Notice from (65)–(67) that then the debt policy instruments are
constant over time, ξ∗t = ξ∗, τ ∗t = τ ∗, υ∗t+1 = υ∗, because, as established above, the optimal
contribution and saving rates in the pension system are constant, τ p

∗

t = τ p
∗
, s∗t = s∗.

Finally, consider a Ramsey government maximizing utility in steady state, hence θ = 1.
Under this assumption we now characterize how ξ∗ varies with income risk. From the
analysis of the deterministic economy above recall that

α

(1− α)(1− κ)
= s∗(1− τ p∗(Ψ̄))

and next use (64) and (66) to rewrite ξ∗ as

ξ∗ = τ p
∗
(

1− 1− τ p∗(Ψ̄)

1− τ p∗
)
. (68)

Expressing ξ∗ in terms of τ p∗ leads us to the following cases concerning the dependence of
optimal debt policy on income risk. First, consider the case that the deterministic laissez-
faire competitive equilibrium has a capital stock below the golden rule. Then, at τ p∗(Ψ̄) < 0

we have ξ∗ = 0, and at Γ̂ (see equation (56), we have τ p∗(Γ̂) = 0 and thus ξ∗(Γ̂) = 0.
Furthermore, since for all Γ ∈ (Γ̄, Γ̂) τ p

∗
(Ψ̄) < τ p

∗
< 0 we find that ξ∗ > 0 for Γ ∈ (Γ̄, Γ̂),

whereas for all Γ > Γ̂ we have τ p∗(Ψ̄) < 0 < τ p
∗ and thus ξ∗ < 0 for Γ > Γ̂. Since in

the deterministic economy ξ∗(Ψ̄) = 0, the government finances some initial transfers to the
period 0 old of Z0 and then rolls over this debt into the future.

In the stochastic economy, however, the Ramsey government pays additional positive
transfers to the period 0 old as long as risk is below the threshold level where social security
turns positive and levies lump-sum taxes on the old for risk beyond that threshold. Second,
in case the deterministic competitive equilibrium economy has a capital stock already above
the golden rule, then for all Γ > Γ̄ the optimal ξ∗ is negative and falling in income risk.

G.2.5 Illustration

For a numerical illustration we return to Figure 1. Panels (c) and (d) of this figure show
the optimal transfer to wage ratio ξ∗ and the optimal debt to capital ratios υ∗ as a function
of income risk. As with social security, it does so both for the case in which there is a
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nonnegativity constraint on υ and the case where the debt level is unconstrained.
First turn to Panel (d) which illustrates that the optimal debt to capital ratio has the

same properties as the optimal pension contribution rate. If the constraint υ ≥ 0 does not
apply, the debt level is negative as long as income risk is small or fairly small, and it is
increasing in risk, turning positive for large income risk. Finally, panel (c) shows the non-
monotonicity of the transfer ratio (on a different scale than the other panels of the figure),
which is positive if income risk is small and fairly small and (increasingly) negative for
fairly large and large income risk.

G.3 Bequest Motive

In this section we provide the detailed analysis of the model with survival risk and warm-
glow bequest motives. Assume now that households survive to the second period with
probability ς ∈ (0, 1). In the second period of life they receive flow utility from own
consumption in case of survival and from bequests, including interest net of taxes, in case
of death.

G.3.1 Households

We assume that bequest utility takes the same functional form (log utility) as utility from
consumption with utility weight parameter ϕ > 0. Accordingly the objective is

max
cyt ,c

o
t+1,a

o
t+1

ln(cyt ) + βEt
[
ς ln(cot+1) + (1− ς)ϕ ln

(
aot+1Rt+1(1− τt+1)

)]
.

and maximization is subject to the per period budget constraints

cyt + aot+1 = (1− κ)wt + ayt + T yt =: xt

cot+1 = aot+1Rt+1(1− τt+1) +
κ

ς
ηwt+1 + T ot+1

where ayt are initial assets from warm-glow bequests and xt is cash in hand of young house-
holds. We denote transfers from the government to the young and old by T yt , T ot+1, respec-
tively. We further make the following

Assumption 3. The total effective utility weight on bequests satisfies

β(1− ς)ϕ < 1.

57



G.3.2 Capital Market Equilibrium

Scaling of labor productivity in the second period by ς achieves that labor in the economy
again aggregates to one

Lt = (1− κ) +
κ

ς
ς

∫
ηdΨ(η) = 1

so that kt+1 = Kt+1

Lt+1
= Kt+1 still applies. The capital market clearing condition reads as

Kt+1 = kt+1 = aot+1 = stxt.

where st is the private saving rate out of cash in hand.

G.3.3 Bequests

The aggregate amount of bequests distributed to the period t+ 1 young generation is

Bt+1 = (1− ς)aot+1Rt+1(1− τt+1).

Since the size of the young population is of measure 1 and they receive all bequests, initial
assets of this generation are given by

ayt+1 = (1− ς)aot+1Rt+1(1− τt+1).

G.3.4 Government

Total government tax revenue is

Tt+1 = aot+1Rt+1τt+1.

By assumption, tax revenues are redistributed to the young and old Tt+1 = T yt+1 + ςT ot+1

according to the rule

T yt+1 = (1− ς)aot+1Rt+1τt+1

ςT ot+1 = ςaot+1Rt+1τt+1.
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G.3.5 Household Maximization

Recall that cash in hand of young households is defined as xt = (1−κ)wt+ayt +T yt . Using
the budget constraints we can rewrite the objective of a household born in t as

max
aot+1

ln(xt − aot+1)+

β

(
Et
[
ς ln

(
aot+1Rt+1(1− τt+1) +

κ

ς
ηwt+1 + T ot+1

)]
+ (1− ς)ϕ

[
ln
(
aot+1

)
+ ln (Rt+1(1− τt+1))

])
and from the last term we observe that τt+1 must be strictly less than one, τt+1 < 1, for
the household maximization problem to be well-defined and a competitive equilibrium to
exist. The first order condition with respect to aot+1 is given by

− 1

cyt
+ β

(
Et
[
ς

1

cot+1

]
Rt+1(1− τt+1) + (1− ς)ϕ 1

aot+1

)
= 0

and thus

1 = β

(
Et
[
ς
cytRt+1(1− τt+1)

cot+1

]
+ (1− ς)ϕ cyt

aot+1

)
= β

(
Et
[
ς
((1− st)xt)Rt+1(1− τt+1)

cot+1

]
+ (1− ς)ϕ(1− st)xt

stxt

)
= β

(
Et

[
ς

((1− st)xt)Rt+1(1− τt+1)

aot+1Rt+1(1− τt+1) + κ
ς
ηwt+1 + T ot+1

]
+ (1− ς)ϕ(1− st)

st

)

= β

(
Et

[
ς

((1− st)xt)Rt+1(1− τt+1)

kt+1αk
α−1
t+1 + κ

ς
η(1− α)kαt+1

]
+ (1− ς)ϕ(1− st)

st

)

= β

(
Et

[
ς

1−st
st
kt+1αk

α−1
t+1 (1− τt+1)

kt+1αk
α−1
t+1 + κ

ς
η(1− α)kαt+1

]
+ (1− ς)ϕ(1− st)

st

)

= β
1− st
st

(
Et

[
ς

(1− τt+1)

α + (1− α)κ
ς
η

]
+ (1− ς)ϕ

)
= β

1− st
st

(ς(1− τt+1)Γ(α, κ, ς,Ψ) + (1− ς)ϕ)

=
1− st
st

Λ(τt+1, α, β, κ, ς, ϕ,Ψ)
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and thus

st =
1

1 + Λ(·)−1
,

where Λ(τt+1, α, β, κ, ς, ϕ,Ψ) = β [ς(1− τt+1)Γ(α, κ, ς,Ψ) + (1− ς)ϕ] and Γ(α, κ, ς,Ψ) =∫
1

α+(1−α)κ
ς
η
dΨ(η). The benchmark model is obtained for ς = 1. Therefore, the saving rate

is constant st = s for all t if and only if the capital income tax is constant τt+1 = τ for
all t. Furthermore, the comparative statics results from the main paper apply to this exten-
sion unchanged, i.e., the competitive equilibrium saving rate st increases in income risk,
and it falls in the capital tax rate τt+1. Also note that st increases in the bequest utility
parameter ϕ, and since

∂Λ

∂ς
= β(1− τt+1)

Γ + ς
∂Γ

∂ς︸︷︷︸
>0

− βϕ
the saving rate increases in survival risk ς only if the bequest utility parameter ϕ is suffi-
ciently low. Otherwise, leaving warm-glow bequests is so valuable, in utility terms, that a
higher likelihood of death increases savings incentives.

As noted above τt+1 must be strictly less than one for the maximization problem of
the household to be well-defined and a competitive equilibrium to exist. This implies a
lower bound on the set of implementable saving rates which we can derive from the private
household first-order condition, by solving for 1− τt+1

1 = β
1− st
st

[ς(1− τt+1)Γ(α, κ, ς,Ψ) + (1− ς)ϕ]

⇔ 1− τt+1 =
1

ςΓ

(
st

β(1− st)
− (1− ς)ϕ

)
=

1

ςΓ

st − β(1− ς)ϕ(1− st)
β(1− st)

=
1

ςΓ

st(1 + β(1− ς)ϕ)− β(1− ς)ϕ
β(1− st)
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and by next noting that

1− τt+1 > 0

⇔ 1

ςΓ

st(1 + β(1− ς)ϕ)− β(1− ς)ϕ
β(1− st)

> 0

⇔ st >
1

1 + (β(1− ς)ϕ)−1 . (69)

Finally, note that to implement a saving rate approaching 1 we require a tax rate

lim
st→1

1− τt+1 = lim
st→1

1

ςΓ

st(1 + β(1− ς)ϕ)− β(1− ς)ϕ
β(1− st)

= +∞

and thus a τt+1 = −∞ is required. This leads to the following proposition, the counterpart
to proposition 1 of the main text:

Proposition 12. For all kt > 0 and all τt ∈ (−∞, 1) the unique saving rate is given by

st =
1

1 + Λ(·)−1
∈
(

1

1 + (β(1− ς)ϕ)−1 , 1

)
where Λ(τt+1, α, β, κ, ς, ϕ,Ψ) = β [ς(1− τt+1)Γ(α, κ, ς,Ψ) + (1− ς)ϕ] and Γ(α, κ, ς,Ψ) =∫

1
α+(1−α)κ

ς
η
dΨ(η).

G.3.6 Maximizing Steady State Utility

In order to obtain a sharp characterization of the optimal solution to the Ramsey problem
with warm-glow bequests we focus on the case of θ = 1 in which case the Ramsey gov-
ernment maximizes steady state welfare. To do so, we now rewrite the Ramsey problem in
terms of the steady state capital stock k(s), which in turn is determined by the steady state
saving rate s. To this purpose note that

ayt + T yt = (1− ς)aotRt(1− τt) + (1− ς)aotRtτt

= (1− ς)aotRt

and thus in general equilibrium

ayt + T yt = (1− ς)aotRt = (1− ς)ktαkα−1
t = (1− ς)αkαt
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and thus consumption of the young and old in general equilibrium is

cyt = (1− st)xt = (1− st) ((1− κ)(1− α) + (1− ς)α) kαt

cot+1(η) =

(
α + (1− α)

κ

ς
η

)
kαt+1.

Similarly, we can write bequeathed wealth, including net-of-tax interest, as

aot+1Rt+1(1− τt+1) = kt+1αk
α−1
t+1 (1− τt+1)

= αkαt+1(1− τt+1).

Recall from the implementation result that

1− τt+1 =
1

ςΓ

st(1 + β(1− ς)ϕ)− β(1− ς)ϕ
β(1− st)

and thus bequeathed wealth in terms of the saving rate in period t and the capital stock in
period t+ 1 is

aot+1Rt+1(1− τt+1) = αkαt+1(1− τt+1)

= α
1

ςΓ

st(1 + β(1− ς)ϕ)− β(1− ς)ϕ
β(1− st)

kαt+1.

From the implementation result in Proposition 12 it follows that st(1 +β(1− ς)ϕ)−β(1−
ς)ϕ > 0 and thus aot+1Rt+1(1− τt+1) > 0.

The link between the saving rate and the capital stock is

kt+1 = stxt

= st ((1− κ)(1− α) + (1− ς)α) kαt ,

and thus the steady state capital stock, as a function of the steady state saving rate s, is

k(s) = [s ((1− κ)(1− α) + (1− ς)α)]
1

1−α .

We can then rewrite consumption when young and old and bequeathed wealth in terms of
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the steady state capital stock and the steady state saving rate s as

cy = (1− s) ((1− κ)(1− α) + (1− ς)α) k(s)α

co(η) =

(
α + (1− α)

κ

ς
η

)
k(s)α

aoR(1− τ) = α
1

ςΓ

s(1 + β(1− ς)ϕ)− β(1− ς)ϕ
β(1− s)

k(s)α

The social welfare function maximizing steady state utility in terms of the saving rate s is
therefore given by

W (s) = ln(cy) + βς

∫
ln(co(η))dΨ(η) + β(1− ς)ϕ ln (aoR(1− τ))

= ln [(1− s) ((1− κ)(1− α) + (1− ς)α) k(s)α] +

βς

∫
ln

[(
α + (1− α)

κ

ς
η

)
k(s)α

]
dΨ(η)+

β(1− ς)ϕ ln

[
α

1

ςΓ

s(1 + β(1− ς)ϕ)− β(1− ς)ϕ
β(1− s)

k(s)α
]

= Ξ + ln(1− s) + α ln(k(s)) + αβς ln(k(s))+

αβ(1− ς)ϕ ln(k(s)) + β(1− ς)ϕ ln(s(1 + β(1− ς)ϕ)− β(1− ς)ϕ)− β(1− ς)ϕ ln(1− s)

= Ξ + (1− β(1− ς)ϕ) ln(1− s) + α (1 + β (ς + (1− ς)ϕ)) ln(k(s))+

β(1− ς)ϕ ln (s(1 + β(1− ς)ϕ)− β(1− ς)ϕ)

= Ξ̃ + (1− β(1− ς)ϕ) ln(1− s) +
α (1 + β (ς + (1− ς)ϕ))

1− α
ln(s)+

β(1− ς)ϕ ln (s(1 + β(1− ς)ϕ)− β(1− ς)ϕ) ,

for some constants Ξ and Ξ̃. From the last term of the objective function we observe that
the optimal saving rate lies in the interval s ∈

(
1

1+(β(1−ς)ϕ)−1 , 1
)

. The first order condition
with respect to s is given by

f(s) = − (1− β(1− ς)ϕ)
1

1− s
+
α (1 + β (ς + (1− ς)ϕ))

1− α
1

s
+

β(1− ς)ϕ(1 + β(1− ς)ϕ)

s(1 + β(1− ς)ϕ)− β(1− ς)ϕ
= 0

Using assumption 3 note that f(s) is continuous and ∂f(s)
∂s

< 0, lims→1 = −∞, as well
as lims→ 1

1+(β(1−ς)ϕ)−1
f(s) = ∞, and thus by the intermediate value there exists a unique
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solution

s∗ (α, β, κ, ς, ϕ) ∈
(

1

1 + (β(1− ς)ϕ)−1 , 1

)
,

which is independent of income risk. Also recall from the implementation result in Propo-
sition 12 that this optimal saving rate can be implemented by some tax rate τ ∗ ∈ (−∞, 1),
which is increasing in income risk. Thus our main results from the benchmark model
without mortality risk and warm-glow bequests go through qualitatively unchanged, even
though we can no longer solve for the optimal Ramsey saving rate in closed form.

Finally, we can establish additional comparative statics results with respect to the new
parameter ϕ measuring the importance of warm-glow bequests. To do so rewrite f(s) as

f(s) = − (1− β(1− ς)ϕ)
1

1− s
+
α (1 + β (ς + (1− ς)ϕ))

1− α
1

s
+

β(1− ς)ϕ
s− 1

1+[β(1−ς)ϕ]−1

= 0

and note that since s > 1
1+[β(1−ς)ϕ]−1 we have ∂f(s)

∂ϕ
> 0 and thus by the implicit function

theorem

∂s

∂ϕ
= −

∂f(s)
∂ϕ

∂f(s)
∂s

> 0.

Therefore, s∗ is increasing in the bequest utility weight parameter ϕ (as is the optimal
competitive equilibrium saving rate sCE).

G.4 One-Sided Altruism

Finally, in this subsection we discuss a model where private intergenerational transfers
are motivated by one-sided altruism of parents towards their children. Thus, rather than
valuing bequests directly in the utility functions parents value the lifetime utility of their
children and potentially give bequests in order to raise that lifetime utility. We aim to
show that this model shares strong similarities to an Aiyagari (1994) style model with
infinitely lived agents facing uninsurable idiosyncratic income risk whose optimal fiscal
policy implications are explored by the references cited in the introduction.

To this end, consider an economy that again extends from t = 0, 1, . . .. Young and
old households are intergenerationally linked through one-sided altruism whose strength is
governed by the parameter δ ≥ 0, which measures the relative weight on the lifetime utility
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of the offspring in the lifetime utility function of the parental generation.

G.4.1 Budget Constraints

We assume that bequests bt flow from the current period old to the current period young
within the period so that no interest payments accrue on bequests. Since bt denotes the pri-
vate transfers received by generation t when young, accordingly bt+1 is the private transfer
this generation pays as bequest to the currently young in t+1. We follow the literature (e.g.,
Bernheim (1989)) and assume that inter-generational transfers cannot be negative, bt ≥ 0.
We also augment the model with a standard borrowing constraint. Since now, through in-
tergenerational linkages, we obtain an endogenous wealth distribution (see below), house-
holds are no longer ex-ante identical when young and this borrowing constraint is poten-
tially binding for some households. We set the borrowing constraint to −Āt ≥ −ĀNBt ,
where −ĀNBt = − κη

Rt+1(1−τt+1)
is the natural debt limit, with η = min η. The budget

constraints for cohort t read as

cyt + at+1 = (1− κ)wt + bt = xyt (70a)

cot+1 + bt+1 = at+1Rt+1(1− τt+1) + κηt+1wt+1 + Tt+1 = xot+1 (70b)

at+1 ≥ −Āt (70c)

bt+1 ≥ 0, (70d)

where the timing of action is such that consumption cot+1 and transfers bt+1 take place after
the income shock ηt+1 has been realized. We define by xyt cash-in-hand of young and by xot
cash-in-hand of old households and note that the law of motion for cash-in-hand is given
by

xot+1 = (xyt − c
y
t )Rt+1(1− τt+1) + κηt+1wt+1 + Tt+1. (71)

Adding the budget constraints of the young and old households in period t we obtain

ct + at+1 = atRt(1− τt) + (1− κ+ κηt)wt + Tt

where ct = cyt + cot is the total consumption of a dynasty in period t. Thus, the budget
constraint of the period t dynastic household is equivalent to a standard budget constraint
in an Aiyagari (1994) style model with idiosyncratic income risk where the income shock
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is εt = (1− κ) + κηt.

G.4.2 Preferences

We denote preferences of cohort t = −1, . . . ,∞ by Ṽt. Each cohort t takes as given
future cohorts’ optimal decision rules cyt+s(x

y
t+s), cot+s(x

o
t+s), aot+s+1(xyt+s), bt+s+1(xot+s+1),

for s > t. Preferences of cohort t are given by

Ṽt = u(cyt ) + Et
[
βu(cot+1) + δ

(
u(cyt+1(xyt+1)) + βu(cot+2(xot+2))

)
+δ2

(
u(cyt+2(xyt+2)) + βu(cot+3(xot+3))

)
+ . . .

]
= u(cyt ) + Et

[
δ

(
u(cyt+1(xyt+1)) +

β

δ
u(cot+1)

)
+

δ2

(
u(cyt+2(xyt+2)) +

β

δ
u(cot+2(xot+2))

)
+ . . .

]
, (72)

where expectations in t are taken with respect to the sequence of shocks {ηs}∞s=t+1. Observe
that in any period s > t the relative utility weight between the old and young is β

δ
.

We assume that the initial old cohort alive in period 0 have the same preferences but
its consumption-savings decision at period −1 has already been made and thus remaining
per period 0 utility constitutes a constant that cannot be affected by the policy instruments
available to the Ramsey government. We spell out the maximization problem of the initial
old explicitly in the next subsection.

G.4.3 The Dynastic Competitive Equilibrium

We focus on a sequential competitive equilibrium where in period 0 all dynastic households
are identical. This is achieved by setting η0 = 1 so that the initial old are (ex-post) identical.
Thus, the distribution of cash-in-hand of the old Φo

0(x0) is degenerate with unit mass at xo0 =

a0R0(1−τ0)+κη0w0 +T0, and, by market clearing in the capital market, we have a0 = k0.
As a consequence, initial consumption co0 and initial transfers of the old households to the
period 0 young households b0 ≥ 0 are singletons, and emerge from maximizing

Ṽ−1 =

[
u(cy0(xy0)) +

β

δ
u(co0)

]
+ δE0

[
u(cy1(xy1)) +

β

δ
u(co1(xo1)) + . . .

]
(73)
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subject to the constraints

co0 + b0 = a0R0(1− τ0) + κw0 + T0 = xo0 and b0 ≥ 0 (74)

taking as given future cohorts’ optimal decision rules cys(x
y
s), cos(x

o
s), aos+1(xys), bs+1(xos+1),

for all s > 0. Since there is no transfer heterogeneity among the initial old, the period 0
young are ex-ante identical and the endogenously determined distribution of the initial
young Φy

0(xy0) is degenerate, with a unit mass of cash-in hand equal to xy0 = (1−κ)w0 +b0.
Equipped with these initial conditions we set the stage for the social welfare function de-
fined below, which, as in Davila et al. (2012) and the optimal Ramsey policy literature in
Bewley-style models, evaluates welfare in a sequential equilibrium from an ex-ante per-
spective where all households are identical.

For a given policy, a sequential dynastic competitive equilibrium is defined as follows:

Definition 2. Given the initial condition k0 = a0, and an associated degenerate initial dis-

tribution Φo(x0) with unit mass at x0 = a0R0(1−τ0)+κw0+T0 and a sequence of tax poli-

cies {τt}∞t=0 a dynastic competitive equilibrium is an allocation {cyt , cot , Lt, at+1, bt+1, xt+1, kt+1}∞t=0,

cross-sectional measures {{Φj
t(xt)}j∈{y,o}}∞t=0, prices {Rt, wt}∞t=0 and transfers {Tt}∞t=0

such that

1. given prices {Rt, wt}∞t=0 and government policies {τt, Tt}∞t=0, for each t ≥ 0,

(a) consumption, savings and transfer decisions (cyt (x
y
t ), c

o
t+1(xot+1), at+1(xyt ), bt+1(xot+1))

maximize (72) subject to (70), and households take as given optimal decision

rules at s > t, (cyt+s(x
y
t+s), c

o
t+s(x

o
t+s), a

o
t+s+1(xyt+s), bt+s+1(xot+s+1));

(b) consumption and transfers of the initial old ex-post identical households (co0(xo0), b0(xo0))

follow from maximizing (73) subject to (74) taking as given future cohorts’ op-

timal decision rules at s > 0, cys(x
y
s), c

o
s(x

o
s), a

o
s+1(xys), bs+1(xos+1);

2. prices satisfy equations (3a) and (3b);

3. the government budget constraint is satisfied in every period: for all t ≥ 0

Tt = τtRtkt
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4. markets clear

Lt = L = 1

kt+1 =

∫
at+1(xyt )dΦy

t (x
y
t )

Cj
t =

∫
cjt(x

j
t)dΦj

t(x
j
t), for j ∈ {y, o}

Cy
t + Co

t + kt+1 = kαt

5. the cross sectional measures evolve as

Φo
t+1(xot+1) = Ho(Φy

t (x
y
t ))

Φy
t (x

y
t ) = Hy(Φo

t (x
o
t )),

where the law of motion Ho is generated by the cash-in-hand transition (71) and the

stochastic i.i.d. shocks ηt+1 ∼ Ψ(ηt+1), and the law of motion Hy is generated by

the transfer decision bt(xot ).

In a dynastic competitive equilibrium the consumption-savings-transfer problem of
any cohort t is solved by backward induction, starting from a final steady state. Denote
by at+2(xyt+1(bt+1)) the savings decision function of cohort t + 1, for a given amount of
transfers bt+1, which we make explicit by writing xyt+1(bt+1). Use (70) in (72) to get

Ṽt = u(xyt − at+1) + δEt

u
(1− κ)wt+1 + bt+1 − at+2(xyt+1(bt+1))︸ ︷︷ ︸

=cyt+1(xyt+1)

+
β

δ
u

xot+1 − bt+1︸ ︷︷ ︸
=cot+1(xot+1)

+ . . .

 ,
which shows how a period t cohort influences, through its transfer decision bt+1, the
consumption-savings decision of its successor’s generation when young cyt+1(xt+1(bt+1)).
As in a standard consumption savings model with a borrowing constraint, constraints (70c)
and (70d) induce a precautionary savings motive beyond the standard prudence motive,
because a binding constraint (70c) in period t + 1 will reduce cyt+1, and a binding con-
straint (70d) will reduce cot+1, relative to the optimal interior paths. These occasionally
binding constraints, together with the standard prudence argument, will induce households
to save more in period t in the presence of idiosyncratic income risk, in turn inducing the
pecuniary externality from changing factor prices wt+1, Rt+1 in general equilibrium em-
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phasized in the main text.

G.4.4 Social Welfare Function

As discussed above, we follow Davila et al. (2012) and evaluate welfare from an ex-ante
perspective. Consider a Ramsey government that weighs explicitly the utility of the period
zero young and all future generations through Pareto weights ρt ≥ 0 and that—different
from Bernheim (1989)—, also puts welfare weight ρ−1 ≥ 0 on the initial old generation’s
per period utility:

SWF = ρ−1u(co0) + ρ0Ṽ0 + E0

[
∞∑
t=1

ρtṼt

]

where we note that each term in the above infinite sum takes the form

E0[Ṽt] = E0

[
u(cyt ) + Et

[
δ

(
u(cyt+1(xyt+1)) +

β

δ
u(cot+1)

)
+ δ2

(
u(cyt+2(xyt+2)) +

β

δ
u(cot+2(xot+2))

)
+ . . .

]]
= E0

[
u(cyt ) + δ

(
u(cyt+1(xyt+1)) +

β

δ
u(cot+1)

)
+ δ2

(
u(cyt+2(xyt+2)) +

β

δ
u(cot+2(xot+2))

)
+ . . .

]
by the law of iterated expectations. We can thus rewrite the social welfare function as

SWF = ρ−1u(co0) + E0

[
ρ0

(
u(cy0) + βu(co1) + δ (u(cy1) + βu(co2)) + δ2 (u(cy2) + βu(co3)) + . . .

)
+

+ ρ1 (u(cy1) + βu(co2) + δ (u(cy2) + βu(co3)) + . . .) + . . .]

= ρ−1u(co0) + ρ0V0 + E0

[
(ρ0δ + ρ1)V1 +

(
ρ0δ

2 + ρ1δ + ρ2

)
V2 + . . .

]
= ρ−1u(co0) + ω0V0 + E0

[
∞∑
t=1

ωtVt

]
(75)

Vt is expected lifetime utility of generation t, ωt =
∑t

s=0 ρsδ
t−s and

∑∞
t=0 ωt < ∞ is

assumed.
First assume that inter-generational transfers are not operational so that bt = 0 in all t.

Then all households in all periods t start with zero bequests, are ex-ante identical and the
borrowing constraint (70c) is not binding. Since the social welfare function (75) is the
same as the one in (4) all results in the main text on the Ramsey optimum can therefore,
not surprisingly, be reinterpreted as emerging in a dynastic competitive market economy
where intergenerational transfers are not operative.
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Now return to the general case where intergenerational transfers are potentially oper-
ative so that bt ≥ 0 for all t ≥ 0. Assume first that ρt = 1 for t = 0 and ρt = 0 for
all t > 0. Then the Ramsey government maximizes the same objective as the dynastic
period 0 household in competitive equilibrium. In this case ωt = δt and the social welfare
function is recursive, as in the benchmark model of the main text. The Ramsey govern-
ment internalizes two effects not taken into account by dynastic households making private
consumption-saving decisions in the competitive equilibrium. First as in the benchmark
model there is a pecuniary externality from increasing savings on the equilibrium wage and
interest rate. The increase in the wage raises the stochastic income component in old age,
the lower interest rate may lead to increased borrowing (if the substitution and the human
capital wealth effect dominate the income effect) and thus more frequently binding borrow-
ing constraints (70c) and (70d). Second, households do not internalize the distributional
effects their decisions have, through changing factor prices, on the endogenously evolving
wealth distribution. These are precisely the same mechanisms emphasized in Davila et al.
(2012)’s study of the constrained planner problem of the Aiyagari (1994) model.

If, in addition ρt > 0 for t > 0 then the Ramsey government puts additional weight on
future generations and thus, in addition to these two mechanisms, the future generations
effect from the OLG benchmark model of the main text is operative. In this case we can
engineer welfare weights ρt such that the social welfare function again has a recursive
representation, but now with ωt = θt. Concretely, this construction is given as follows:
using that ωt =

∑t
s=0 ρsδ

t−s we obtain:

ω0 = θ0 = 1 = ρ0 ⇔ ρ0 = 1

ω1 = θ = ρ0δ + ρ1 ⇔ ρ1 = θ − δ

ω2 = θ2 = δ2 + ρ1δ + ρ2 ⇔ ρ2 = θ2 − δ2 − δ(θ − δ) = θ(θ − δ)

ω3 = θ3 = δ3 + ρ1δ
2 + ρ2δ + ρ3 ⇔ ρ3 = θ3 − δ3 − δ2(θ − δ)− δ (θ − δθ) = θ2 (θ − δ)

and thus ρt = 1, for t = 0 and ρt = θt−1 (δ − θ) for t > 0. Notice that ρt ≥ 0 for t > 0 if
and only if θ ≥ δ. Thus, this is a valid social discount function if and only if the planner
exhibits weakly more patience than the dynastic household, and we summarize the cases
as:

ωt =

δt for θ = δ

θt for θ > δ,
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In the first case the Ramsey government—in addition to valuing the initial old generation
through weight ρ−1—shares the same objective as the initial dynastic cohort at t = 0. In
the second case, the Ramsey government values future generations more heavily and the
future generations effect is operative.

To summarize the discussion in this section, we note that in the dynastic model de-
scribed here the same mechanisms shape optimal Ramsey allocations as they do in the
constrained planner problem of Davila et al. (2012) if the Ramsey government weighs
only the period 0 utility of the period 0 dynastic household from an ex-ante perspective. If
the Ramsey government places additional welfare weights on future generations, then the
additional future generations effect from the main text emerges, pushing down the optimal
capital income taxes. An analytical solution of this model is infeasible even with log-utility,
and a full numerical exploration is left for future research, and, in the case of θ = δ, such an
analysis directly relates to the papers on optimal policy in the Aiyagari (1994)-style models
cited in the main text.

H Capital Stock Dynamics and Capital Income Taxes

In this appendix we make precise the relation between the capital taxes τt studied thus far,
and the implied optimal capital income taxes τ kt . These are related by the equation

1 + (Rt − 1)(1− τ kt ) = Rt(1− τt)

and thus
τ kt =

Rt

Rt − 1
τt,

where the gross return is given by Rt = α (kt)
α−1 . As long as Rt > 1 for all t, capital

taxes and capital income taxes have the same sign. To give a sufficient condition for this,
note that the saving rate, together with the law of motion for the capital stock

kt+1 = st(1− κ)(1− α)kαt =
α(θ + β)(1− κ)(1− α)

1 + αβ
kαt

and the initial condition k0 determine the entire time path for the capital stock. That se-
quence {kt}∞t=1 is independent of the amount of income risk and converges monotonically
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to the steady state

k∗ =

[
α(θ + β)(1− κ)(1− α)

1 + αβ

] 1
1−α

,

either from above if k0 > k∗ or from below, if k0 < k∗. A sufficient condition for Rt > 1

for all t can then be given as:

Assumption 4. The initial capital stock and the model parameters satisfy k0 < α
1

1−α and

1 + αβ

(θ + β)(1− κ)(1− α)
> 1.

This assumption assures that net returns are strictly positive at all times in the Ram-
sey equilibrium, since R0 = α (k0)α−1 > 1 and R∗ = α (k∗)α−1 > 1, (and because the
sequence of Rt along the transition is monotone) and thus the Ramsey allocation can be
supported by capital income taxes of the same sign as the corresponding wealth taxes. Un-
der assumption 4 therefore all interpretations and qualitative results extend without change
to capital income taxes.

I Robustness to Other Assumptions

I.1 Idiosyncratic Return Risk

We denote return shocks by %t+1 and assume that they are iid. We assume that the cdf of %
is given by Υ(%) and denote the corresponding pdf by υ (%). We again assume that a LLN
applies so that Υ is both the population distribution of % as well as the individual cdf of
return shocks. We make the following

Assumption 5. The shock % takes positive values Υ-almost surely and∫
%dΥ = 1.

Furthermore, shocks η and % are independent12 and therefore∫
%

∫
η

%ηdΥ(%)dΨ(η) =

∫
%dΥ(%) ·

∫
ηdΨ(η)

almost surely.
12Independence is assumed for simplicity of notation but can be relaxed for the result.

72



The budget constraints now write as

at+1 + cyt = (1− κ)wt

cot+1(η, %) = at+1Rt+1%t+1(1− τt+1) + ηt+1κwt+1 + Tt+1(%)

and we assume that transfer payments are contingent on the rate of return realization,

Tt+1(%) = at+1Rt+1%t+1τt+1.

I.1.1 General Equilibrium

Proposition 13. The structure of the competitive equilibrium is unchanged, but now id-

iosyncratic risk summarized by Γ is expressed in terms of the distribution Π(δt+1) of the

random variable δt+1 = ηt+1

%t+1
instead of Ψ(ηt+1).

Proof. The first-order condition for log utility is now

1 = βRt+1(1− τt+1)

∫ ∫
%t+1

cyt
cot+1(η)

dΨ(η)dΥ(%)

= αβkα−1
t+1 (1− τt+1)

∫ ∫
%t+1

(1− st)(1− κ)(1− α)kαt
st(1− κ)(1− α)kαt αk

α−1
t+1 %t+1 + ηt+1κ(1− α)kαt+1

dΨ(η)dΥ(%)

= αβ(1− τt+1)
1− st
st

∫ ∫ (
α + κ(1− α)

ηt+1

%t+1

)−1

dΨ(η)dΥ(%)

= αβ(1− τt+1)
1− st
st

∫
(α + κ(1− α)δt+1)−1 dΠ(δ)

= αβ(1− τt+1)
1− st
st

Γ(α, κ; δ,Π).

and thus the general equilibrium saving rate is the same as before, with Γ expressed in
terms of random variable δ and its cdf Π(δ).

I.1.2 Ramsey Problem

Proposition 14. The structure of the optimal Ramsey problem is unchanged, but with id-

iosyncratic risk now expressed in terms of the random variable δt+1 = ηt+1

%t+1
instead of ηt+1.

Proof. The steps are identical to the ones in the derivation in equation (2). The objective
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function of the Ramsey government in the current period can be written as

W (k) = ln ((1− s)(1− κ)(1− α)kα) + β

∫ ∫
ln (κηw(s) +R(s)%k′(s)) dΥ(%)dΨ(η)

= ln ((1− s)(1− κ)(1− α)kα) + β

∫ ∫
ln

(
%

(
κ
η

%
(1− α) + α

)
k′(s)

)
dΥ(%)dΨ(η)

= ln(1− s) + αβ ln(s) + (1 + αβ) ln((1− κ)(1− α)) + α(1 + αβ) ln(k)

+ β

∫
ln(%)dΥ(%) + β

∫
ln (κδ(1− α) + α) dΠ(δ).

Note that the risk terms in the last line simply add maximization-irrelevant constants to the
period objective of the Ramsey government.

I.2 Ex-Ante Heterogeneity

Permanent productivity is denoted by ν and we assume that the cdf of ν is given by Φ(ν).

We assume that a LLN applies so that Φ is both the population distribution of permanent
productivity ν as well as the ex-ante cdf over ν for each household. We make the following

Assumption 6. The shock ν takes positive values Φ-almost surely and∫
νdΦ = 1.

Furthermore, shocks η and ν are independent, thus∫
ν

∫
η

νηdΦ(ν)dΨ(η) =

∫
νdΦ(ν) ·

∫
ηdΨ(η) = 1.

The budget constraints of each household of productivity type i is now given by

at+1(ν) + cyt (ν) = (1− κ)νwt

cot+1(ν, η) = at+1Rt+1(1− τt+1) + ηt+1νκwt+1 + Tt+1(ν),

where

Tt+1(ν) = at+1(ν)Rt+1τt+1

In all periods t we have Lt =
∫ ∫

((1− κ)ν + κνηt) dΨ(η)dΦ(ν) = 1 and thus the
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capital stock in period t+ 1, Kt+1, is equal to the capital intensity kt+1 = Kt+1

Lt+1
. Denote by

st(ν) =
at+1(ν)

(1− κ)νwt

the saving rate of household of type ν. The capital intensity in period t+ 1 is then

kt+1 =

∫
at+1(ν)dΦ(ν) = (1− κ)(1− α)kαt

∫
st(ν)νdΦ(ν).

I.2.1 General Equilibrium

Proposition 15. The general equilibrium saving rates st(ν) are identical for all agents: st(ν) =

st for all ν.

Proof. If s(ν) = st then since
∫
νdΦ(ν) = 1 the law of motion of the capital stock is

kt+1 = st(1− κ)(1− α)kαt .

The first-order condition with log utility of each household is now

1 = βRt+1(1− τt+1)

∫ ∫
cyt (ν)

cot+1(η, ν)
dΨ(η)dΦ(ν)

= αβkα−1
t+1 (1− τt+1)

∫ ∫
(1− st)ν(1− κ)(1− α)kαt

st(1− κ)(1− α)kαt αk
α−1
t+1 + ηt+1κ(1− α)kαt+1

dΨ(η)dΦ(ν)

= αβkα−1
t+1 (1− τt+1)

∫ (1−st)
st

kt+1

kt+1αk
α−1
t+1 + ηt+1κ(1− α)kαt+1

dΨ(η)

= αβ(1− τt+1)
1− st
st

Γ.

Thus the optimal saving rate is independent of permanent productivity ν.

I.2.2 Ramsey Problem

Proposition 16. Permanent ex-ante heterogeneity in productivity ν does not affect the op-

timal choice of s.
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Proof. The objective of the Ramsey planner is now given by

W (k) = max
s∈(0,1)

∫
ln ((1− s)ν(1− κ)(1− α)kα) dΦ(ν)+

β

∫ ∫
ln (κηνw(s) +R(s)sν(1− κ)(1− α)kα) dΦ(ν)dΨ(η),

= (1 + β)

∫
ln(ν)dΦ(ν) + max

s∈(0,1)
ln ((1− s)(1− κ)(1− α)kα) +

β

∫
ln (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η)

and thus heterogeneity with respect to ν does not affect the optimization.

I.3 Time Varying Technological Progress and Population Growth

Denote by At the level of technology (labor productivity) and assume that it evolves de-
terministically according to At = (1 + gt)At−1, where the growth rate of technology gt is
allowed to be time-varying. The population growth rate n ≥ 0 is assumed to be constant
over time, so that the size of the young population evolves according to Ny

t = (1+n)Ny
t−1.

With these modifications, aggregate production is

Yt = F (Kt, AtLt) = Kα
t (AtLt)

1−α ,

where Lt is aggregate labor supply given by

Lt = (1− κ)Ny
t + κN o

t = ((1− κ)(1 + n) + κ)Ny
t−1.

Define the capital intensity in terms of efficiency units of labor as kt = Kt
AtLt

. Then,
under the maintained assumption of Cobb-Douglas production, Yt = Kα

t (AtLt)
1−α we

get yt = Yt
AtLt

= kαt and thus wages (per effective unit of labor) and interest rates are

wt = (1− α)kαt At

Rt = αkα−1
t .
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The law of motion of the capital intensity can be derived as

Kt+1 = at+1N
y
t = st(1− κ)(1− α)kαt AtN

y
t

⇔ kt+1 = st
(1− κ)(1− α)

(1 + gt+1) ((1− κ)(1 + n) + κ)
kαt .

I.3.1 General Equilibrium

Proposition 17. A time varying rate of technological progress gt does not affect the saving

rate in the competitive general equilibrium, whereas an increase of the constant population

growth rate n increases the saving rate.

Proof. Start from the FOC, equation (6), given by

1 = β(1− τt+1)

∫
1− st

st(1− τt+1) + κwt+1

(1−κ)wtRt+1
ηt+1 + Tt+1

(1−κ)wtRt+1

dΨ(ηt+1)

and use that

τt+1st =
Tt+1

(1− κ)wtRt+1

to obtain

1 = β(1− τt+1)

∫
1− st

st + κwt+1

(1−κ)wtRt+1
ηt+1

dΨ(ηt+1)

Next, rewrite wt+1

wtRt+1
as

wt+1

wtRt+1

=
kαt+1At+1

kαt Atαk
α−1
t+1

= (1 + gt+1)
1

α

kt+1

kαt

= (1 + gt+1)
1

α
st(1− κ)(1− α)

1

(1 + gt+1) ((1− κ)(1 + n) + κ)

=
1

α
st(1− κ)(1− α)

1

(1− κ)(1 + n) + κ
.

77



Observe that the time varying growth rate gt+1 cancels out, and we can rewrite the FOC as

1 = αβ(1− τt+1)
1− st
st

∫
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

ηt+1

dΨ(ηt+1)

= αβ(1− τt+1)
1− st
st

Γ̌.

where Γ̌ :=
∫

1
α+κ(1−α) 1

(1−κ)(1+n)+κ
ηt+1

dΨ(ηt+1).

I.3.2 Ramsey Optimum

Proposition 18. A time varying rate of technological progress gt as well as a constant

population growth rate n leave the optimal Ramsey saving rate unchanged.

Proof. With log utility, cohort t lifetime utility is given by

Vt(kt, st, At) = ln(At) + ln ((1− st)(1− κ)kαt ) + αβ ln ((1 + gt+1)kt+1(st)) + β ln (Γ2)

= ln(At) + αβ ln(1 + gt+1) + Ṽt(kt, st),

where Γ2 =
∫

((1− α)κηt+1 + α)1−σ dΨ(ηt+1). Next, assume that the government max-
imizes the discounted sum of utility of cohorts t weighted by the population size of that
cohort so that the objective is to maximize

W0 =
∞∑
t=0

ωtN
y
t Vt(kt, st, At) = χ+

∞∑
t=0

ωtN
y
t Ṽt(kt, st),

where χ is a maximization irrelevant constant. Finally, normalizing N0 = 1 we get

W0 =
∞∑
t=0

ω̃tṼt(kt, st)

where ω̃t = ωt(1 + n)t. Also note that

kt+1(st) = st
(1− κ)(1− α)

(1 + gt+1) ((1− κ)(1 + n) + κ)
kαt .
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and thus

Ṽt(kt, st) = ln (((1− st)(1− κ)kαt )) + αβ ln (kt+1(st)) + β ln (Γ2)

= ln (((1− st)(1− κ)kαt )) + αβ ln

(
st

(1− α)(1− κ)

(1 + gt+1) ((1− κ)(1 + n) + κ)
kαt

)
+ β ln (Γ2)

= χt + ln (1− st) + α(1 + αβ) ln (kt) + αβ ln (st)

and thus time varying technological progress and population growth only add a maximiza-
tion irrelevant (time varying) additive parameter. Also since

ln(kt+1) = ln(1− α) + ln(1− κ) + α ln(kt) + ln(st)− ln ((1 + gt+1) ((1− κ)(1 + n) + κ))

= κt+1 +
t∑

τ=0

ατ ln(st−τ ) + αt+1 ln(k0)

= κ̃t+1 +
t∑

τ=0

ατ ln(st−τ )

we can substitute out ln (kt) in the cohort t utility function (as before), which adds addi-
tional maximization irrelevant time varying terms.

I.3.3 The Bounds of Proposition 4 with Technological Progress and Population Growth

We focus on a steady state where the rate of technological progress is a constant g.

Golden Rule. Maximizing steady state utility is equivalent to maximizing per capita con-
sumption. The per capita resource constraint, noticing that in the social planner’s opti-
mum cot (η) = cot , is

cytN
y
t + cotN

o
t

Nt

=
F (Kt, Lt)−Kt+1

Nt

.
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Now observe that in steady state where kt+1 = kt = k we have

Ny
t = (1 + n)Ny

t−1, N
o
t = Ny

t−1

Nt = Ny
t +N o

t = (2 + n)Ny
t−1

Lt = ((1− κ)(1 + n) + κ)Ny
t−1

F (Kt, Lt) = kαAtLt = kαAt ((1− κ)(1 + n) + κ)Ny
t−1

Kt+1 = kAt+1Lt+1 = k(1 + n)(1 + g) ((1− κ)(1 + n) + κ)Ny
t−1

and thus maximizing per capita consumption is equivalent to

max
k
{c̃yt (1 + n) + c̃ot} = max

k
{(kα − k(1 + n)(1 + g)) ((1− κ)(1 + n) + κ)}

where c̃t = ct
At

is detrended consumption. The first-order condition gives

αkα−1 = (1 + n)(1 + g)

and thus the golden-rule capital stock is

kGR =

(
α

(1 + n)(1 + g)

) 1
1−α

with the standard intuitive explanation that, with population growth and technological
progress, more efficient workers have to be equipped each period with an increasing capital
stock to hold constant capital per efficient worker. The golden rule interest rate is thus

RGR = αkGR
α−1

= (1 + n)(1 + g).

Finally, from the law of motion of the capital stock we have

k′ = s
(1− κ)(1− α)

(1 + g) ((1− κ)(1 + n) + κ)
kα

and thus the steady state capital stock for given saving rate is

k∗ =

(
s∗

(1− κ)(1− α)

(1 + g) ((1− κ)(1 + n) + κ)

) 1
1−α

.
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Setting k∗ = kGR then gives the golden rule saving rate as

sGR =
α ((1− κ)(1 + n) + κ)

(1− κ)(1− α)(1 + n)
.

Competitive Equilibrium and Overaccumulation of Capital Since R∗ = αk∗α−1, the
steady state interest rate for given saving rate is

R∗ =
α(1 + g) ((1− κ)(1 + n) + κ)

s∗(1− κ)(1− α)
.

Now use that

s∗ =
(1− τ)αβΓ̌

1 + (1− τ)αβΓ̌
,

as defined above, to get

R∗(τ, Γ̌) =
(1 + g) ((1− κ)(1 + n) + κ)

(1− κ)(1− α)

(
α +

1

(1− τ)βΓ̌

)
and thus in the laissez-faire steady state we have

R∗(τ = 0, Γ̌) =
(1 + g) ((1− κ)(1 + n) + κ)

(1− κ)(1− α)

(
α +

1

βΓ̌

)
.

Since the laissez-faire equilibrium economy has overaccumulated capital ifR∗(τ = 0, Γ̌) <

(1 + n)(1 + g) we obtain overaccumulation if

(1 + g) ((1− κ)(1 + n) + κ)

(1− κ)(1− α)

(
α +

1

βΓ̌

)
< (1 + n)(1 + g)

⇔ β >
1(

(1−κ)(1−α)(1+n)
(1−κ)(1+n)+κ

− α
)

Γ̌

Recall that

Γ̌ =

∫
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

ηt+1

dΨ(ηt+1).
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and thus in the deterministic economy we have

¯̌Γ =
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

Now rewrite the bound on β above to get

β >
1(

(1−κ)(1−α)(1+n)
(1−κ)(1+n)+κ

− α
)

Γ̌

=
1(

−κ(1−α)+(1−α)(1+n)−κ(1−α)n
(1−κ)(1+n)+κ

− α
)

Γ̌

=
1(

(1−α)(1+n(1−κ))
1+n(1−κ)

−
(
α + κ(1−α)

(1−κ)(1+n)+κ

))
Γ̌

=
1(

(1− α)Γ̌− Γ̌/¯̌Γ
) := Θ1

(
Γ̌, ¯̌Γ

)

Since the structure of the Ramsey problem has not changed, we continue to find that the
optimal saving rate for θ = 1 is

s∗ =
α(1 + β)

1 + αβ

and thus the tax rate implementing it satisfies

1− τ =
1 + β

(1− α)βΓ̌

and thus we have τ > 0, if and only if

1 + β

(1− α)βΓ̌
< 1

or if and only if

Θ2

(
Γ̌
)

:=
1

(1− α)Γ̌− 1
< β.

Stating the inequalities in terms of Γ̌ the regions corresponding to Proposition 4 become

1. Γ̌ > 1

((1−α)−1/¯̌Γ)β
: k > kGR, τ > 0
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2. Γ̌ ∈
(

1+β
(1−α)β

, 1

((1−α)−1/¯̌Γ)β

]
: k ≤ kGR, τ > 0

3. Γ̌ ∈
(

¯̌Γ, 1+β
(1−α)β

]
: k ≤ kGRτ < 0

Recall that

¯̌Γ =
1

α + κ(1− α) 1
(1−κ)(1+n)+κ

and thus an increase of n increases ¯̌Γ increasing the lower bound of the third interval. By
increasing ¯̌Γ it also reduces 1

((1−α)−1/¯̌Γ)β
and thus the interesting interval (the case 2 of

intermediate risk) gets smaller. Finally, positive population growth reduces the sensitivity
of Γ̌ with respect to increasing risk.

J General Intertemporal Elasticity of Substitution ρ and
Risk Aversion σ

In this appendix we provide the detailed analysis of a more general utility function with
intertemporal elasticity of substitution ρ and risk aversion σ summarized in Section 6.3.6
of the main text. Most of the analysis focuses on steady states, but we establish that our
closed form results for the entire transition go through unchanged for an IES ρ = 1. We
first characterize the competitive equilibrium for a given tax policy, prior to stating and
analyzing the Ramsey problem.

J.1 Competitive Equilibrium for Given Tax Policy

The Euler equation with the more general utility function now reads as:

1 = β(1− τt+1)Rt+1

[∫ (
cot+1(ηt+1)

cyt

)1−σ

dΨ(ηt+1)

]σ− 1
ρ

1−σ ∫ (
cot+1(ηt+1)

cyt

)−σ
dΨ(ηt+1).

and, using the expressions for consumption in both periods and the law of motion of the
capital stock, as in the previous analysis we can rewrite the first-order condition as

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τt+1)k

α(α−1)(1− 1
ρ)

t st
(α−1)(1− 1

ρ)
(

1− st
st

) 1
ρ

Γ̃.
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In steady state the Euler equation reads as

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τ)kα(α−1)(1− 1

ρ)s(α−1)(1− 1
ρ)
(

1− s
s

) 1
ρ

Γ̃

where
k = [(1− κ)(1− α)s]

1
1−α (76)

is the steady state capital stock and the constant Γ̃ is given by

Γ̃ = v(σ− 1
ρ)
∫

(κηt+1(1− α) + α)−σ dΨ(ηt+1) (77)

and v is the certainty equivalent of η defined as

v =


[∫

(α + (1− α)κη)1−σ dΨ(η)
] 1

1−σ for σ = 1

exp
(∫

ln (α + (1− α)κη) dΨ(η)
)

otherwise.
(78)

Inserting the steady state capital from equation (76) into the Euler equation delivers

1 = (1− τ)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s)

1
ρ

s
Γ̃. (79)

This result is the generalization of the log-case where ρ = σ = 1, and where the steady
state Euler equation was given as

1 = (1− τ)αβ

(
1− s
s

)
Γ

Thus our previous analysis for log-utility is just a special case. Also note that if ρ = 1 but
σ 6= 1, then the steady state Euler equation is given by

1 = (1− τ)αβ

(
1− s
s

)
Γ̃

but the risk factor Γ̃ with σ 6= 1 differs from the risk factor Γ with σ = 1.

Γ̃ =

∫
(α + (1− α)κη)−σ dΨ(η)∫
(α + (1− α)κη)1−σ dΨ(η)

6=
∫

(κη(1− α) + α)−1 dΨ(η) = Γ
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J.1.1 Precautionary Savings Behavior in the Competitive Equilibrium

In order to aid with the interpretation of the optimal Ramsey tax rate it is useful to establish
conditions under which, for a fixed tax rate, the saving rate in competitive equilibrium is
increasing in income risk.

Proposition 19. If Γ̃ is strictly increasing in income risk, then for any given tax rate

τ ∈ (−∞, 1) the steady state saving rate sCE(τ) in competitive equilibrium is strictly

increasing in income risk. If Γ̃ is strictly decreasing in income risk, then so is sCE(τ).

Proof. Rewrite equation (79) as

f(s) = (1− τ)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s)

1
ρ

s
− 1

Γ̃
.

Then a saving rate sCE(τ) that satisfies f(sCE(τ)) = 0 is a steady state equilibrium saving
rate. We readily observe that f is continuous and strictly decreasing in s, with

lim
s→0

f(s) = ∞

f(1) = − 1

Γ̃
< 0

and thus for each τ ∈ (−∞, 1) there is a unique s = sCE(τ) that satisfies f(sCE(τ)) = 0.

Inspection of f immediately reveals that sCE(τ) is strictly increasing in Γ̃, from which the
comparative statics results follow.

Corollary 6. For any given τ ∈ (−∞, 1), the steady state saving rate sCE(τ) increases in

income risk if either ρ ≤ 1, or 1 < ρ < 1
σ

.

Proof. Follows directly from the previous proposition and Lemma 2 in the main text (and
proved in the next section) characterizing the behavior of Γ̃ with respect to income risk.

Proposition 19 establishes a sufficient condition for the private saving rate to increase
in income risk. But, for ρ > 1

σ
> 1 it is possible that the combination of individual savings

behavior and general equilibrium factor price movements lead to the result that, for fixed

government policy, the equilibrium saving rate is decreasing in income risk.13 We will
13Also observe that a parameter constellation 1 < ρ < 1

σ pairs a high IES with a preference for a late
resolution of risk in a multi-period (more than two periods) model. Interestingly, the competitive equilibrium
saving rate may therefore decrease in income risk precisely when we pair a high IES with a preference
constellation for early resolution of risk.
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show below that this in turn is a necessary condition for the optimal Ramsey tax rate to
decrease in income risk.

J.2 The Ramsey Problem

As in Section 4, equation (12), we can write lifetime utility of a generation born in period
t, in general equilibrium, as a function of the beginning of the period capital stock kt and
the saving rate st chosen by the Ramsey government and implemented by the appropriate
choice of the capital tax τt+1.

J.2.1 Ramsey Problem for Unit IES

Now we use the formulation of lifetime utility in equation (25). Then it is straightforward to
show that for ρ = 1 the analysis of the Ramsey problem proceeds exactly as for log utility
(ρ = σ = 1), by making the problem recursive and using the method of undetermined
coefficients:

W (k) = Θ0 + Θ1 ln(k)

= max
s∈[0,1]

{ln((1− s)(1− κ) (1− α) kα)

+
β

1− σ
ln

∫
(κηw(s) +R(s)s(1− κ)(1− α)kα)1−σ dΨ(η) + θW (k′)

}
= max

s∈[0,1]
{ln((1− s)(1− κ) (1− α) kα)

+
β

1− σ
ln

∫
([κη(1− α) + α] [s(1− κ)(1− α)kα]α)

1−σ
dΨ(η) + θW (s(1− κ)(1− α)kα)

}
= α [1 + θΘ1 + αβ] ln(k) + ln [(1− κ) (1− α)] + θΘ0 + θΘ1 ln((1− κ)(1− α))

+βα ln [(1− κ)(1− α)] +
β ln

∫
[κη(1− α) + α]1−σ dΨ(η)

1− σ
+ max

s∈[0,1]
{ln(1− s) + αβ ln (s) + θΘ1 ln(s)}

As in Appendix B.2, comparing the terms involving k gives the constant Θ1 = α(1+αβ)
(1−αθ) , and

taking the first order condition with respect to s and solving it delivers the optimal saving
rate as stated in the main text:

s =
α(β + θ)

1 + αβ
.
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This result clarifies that the closed form solution, and the fact that the optimal saving rate is
constant over time and independent of the level of capital, is driven by the assumption that
IES = ρ = 1 (and obtained for arbitrary risk aversion), whereas the size of the capital tax
needed to implement the optimal Ramsey allocation evidently does depend on risk aversion
σ, see Section J.1.

J.2.2 Steady State Analysis of Ramsey Problem for Arbitrary IES ρ 6= 1

The Ramsey government maximizing steady state lifetime utility has the objective function:

V (s) =
(cyt )

1− 1
ρ + β

{[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− s)(1− α)kα)1− ‘1

ρ

1− 1
ρ

+
β [s(1− κ)(1− α)kα]α(1− 1

ρ)
{[∫
{[κη(1− α) + α]}1−σ dΨ

] 1
1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ)kα(1− 1

ρ) +
β [(1− κ)(1− α)]α(1− 1

ρ) Γ̃2

1− 1
ρ

sα(1− 1
ρ)kα

2(1− 1
ρ)

where

Γ̃2 =

[∫
{[κη(1− α) + α]}1−σ dΨ

] 1− 1
ρ

1−σ

.

Exploiting that in steady state

k = ((1− κ)(1− α)s)
1

1−α

yields

V (s) =
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ) ((1− κ)(1− α)s)

α(1− 1
ρ)

1−α

+
β [(1− κ)(1− α)]α(1− 1

ρ) Γ̃2

1− 1
ρ

(s)α(1− 1
ρ) ((1− κ)(1− α)s)

α2(1− 1
ρ)

1−α

= φ̃
(

(1− s)(1− 1
ρ) + βζ̃Γ̃2

)
s
α(1− 1

ρ)
1−α ,
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where

φ̃ =
((1− κ)(1− α))

1− 1
ρ

1−α

1− 1
ρ

ζ̃ =

(
1

(1− κ)(1− α)

)(1− 1
ρ

)

> 0

Γ̃2 =

([∫
{[κη(1− α) + α]}1−σ dΨ

] 1
1−σ
)1− 1

ρ

> 0.

Thus the steady state analysis in the main text carries through to Epstein-Zin-Weil utility
mostly unchanged, but with the constant that maps earnings risk into the optimal saving
rate now being affected both by risk aversion and the IES.

Taking the first order condition, the optimal steady state saving rate is defined implicitly
by the equation

s

(1− s)
1
ρ

=
α

1− α
(1− s)(1− 1

ρ) + β
α

1− α
ζ̃Γ̃2 (80)

and rewriting this equation yields

LHS(s) = s =
α

1− α

[
(1− s) + βζ̃Γ̃2(1− s)

1
ρ

]
= RHS(s). (81)

We observe that the left hand side is linearly increasing in s, with LHS(0) = 0 and
LHS(1) = 1 and the right hand side is strictly decreasing in s, with RHS(0) > 0 and
RHS(1) = 0. Since both sides are continuous in s, from the intermediate value theorem
it follows that there is a unique s∗ ∈ (0, 1) solving the first order condition of the Ramsey
problem (81). Since RHS(s) is strictly increasing in Γ̃2, the Ramsey saving rate is strictly
increasing in Γ̃2. We then have

Proposition 20. Suppose that θ = 1 and thus the Ramsey government maximizes steady

state welfare. There exists a unique optimal Ramsey saving rate s∗ ∈ (0, 1) solving equa-

tion (81). This saving rate is strictly increasing in the risk constant Γ̃2 and can be imple-

mented with a capital tax rate τ ∗ determined by the competitive equilibrium Euler equation:

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (82)
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For future reference we rewrite equation (81) as

(1− s)
1
ρ

s
=

1−α
α
− (1−s)

s

βζ̃Γ̃2

=
1
α
− 1

s

βζ̃Γ̃2

. (83)

J.2.3 Comparative Statics with Respect to Income Risk

In Appendix K.1 we prove the following result relating the extent of income risk to the
constants Γ̃, Γ̃2 which are in turn crucial for determining comparative statics results.

Lemma 2. An increase in income risk (a mean-preserving spread of η) increases Γ̃2 if and

only if ρ ≤ 1 and increases Γ̃ if ρ ≤ 1, or ρ > 1 and σ < 1/ρ.

Note that the condition that characterizes the relation between income risk and Γ̃2 is
necessary and sufficient whereas the two alternative conditions that characterize the relation
between income risk and Γ̃ are only sufficient.14 We provide further intuition for this result
below when discussing implementation of the optimal Ramsey policy. We now derive the
comparative statics of s∗ and τ ∗ with respect to income risk discussed in the main text.

Risk and the Optimal Saving Rate The comparative static results of the steady state
Ramsey saving rate with respect to income risk is stated in the next:

Proposition 21. An increase in income risk increases the optimal steady state Ramsey

saving rate s∗ if and only if ρ < 1 and decreases it if and only if ρ > 1.

The proof of this result follows directly from Lemma 2 and Proposition 20. Thus the
direction of the change in s with respect to income risk is exclusively determined by the
IES ρ, with the log-case acting as a watershed. Of course how strongly the saving rate re-
sponds to an increase in income risk is also controlled by risk aversion through the term Γ̃2.

What is the intuition for this result? Suppose the economy is in the steady state associated
with a given extent of income risk and the optimal Ramsey tax policy, and now consider
an increase in income risk. The Ramsey government can always neutralize the response of
private households’ savings behavior, by appropriate adjustment of the tax rate on capital
to implement the new optimal saving rate.15

14The sufficient conditions provided in the Lemma are stated in the Propositions 5 and 6 of Kimball and
Weil (2009).

15We saw this explicitly in the decomposition of the first order condition of the Ramsey government in
Section 4.1, where the risk term Γ from the competitive equilibrium optimality condition dropped out because
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The question is then how the saving rate desired by the Ramsey government itself
changes. Households (and thus the Ramsey government) obtain utility from safe consump-
tion when young and risky consumption when old, and the desire for smoothing utility
from safe consumption when young and the certainty equivalent of consumption when old
is determined by the IES ρ. As risk increases, old age consumption is now a less effec-
tive way to generate utility, and the certainty equivalent of old-age consumption declines,
holding the consumption allocation constant. Whether the Ramsey government wants to
raise or lower old-age consumption (by increasing or reducing the saving rate) depends
on how much households value a smooth life cycle utility profile. In the log-case the two
forces exactly balance out and the Ramsey saving rate does not respond to income risk at
all. In contrast, if households strongly desire a smooth path of (the certainty equivalent of)
consumption, then the Ramsey government compensates for the loss of old-age certainty
equivalent consumption from larger income risk by saving at a higher rate, and s increases
with income risk if the IES ρ is small. The reverse is true for a high IES.

Risk and the Optimal Tax Rate Finally, we can also determine the impact of income
risk on optimal steady state capital taxes. From equation (82) the optimal Ramsey tax rate
is given by

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (84)

We observe that income risk affects the optimal tax rate in two ways. First, for a given target
saving rate s∗, the direct impact of income risk depends on how Γ̃ (and thus the private
saving rate) responds to an increase in risk. Second, a change in income risk changes the
optimal saving rate s∗ through Γ̃2, as characterized in the previous proposition.

Proposition 22. If ρ ≤ 1, then an increase in income risk increases the optimal tax rate

on capital. Similarly, if ρ > 1 and σ ≤ 1/ρ, then an increase in income risk increases the

optimal tax rate on capital. If ρ > 1 and σ > 1/ρ, an increase in income risk might lead

to a strict reduction in the optimal tax rate τ on capital. A necessary condition for this to

occur is that the competitive equilibrium saving rate for given τ is strictly decreasing in

income risk.

The intuition for the last part of the proposition is that, if ρ > max{1, 1/σ}, then private

the government chooses, through taxes and the associated changes in factor prices, to exactly offset the impact
of higher risk on private household savings decisions. In the logic of that section, an increase in Γ increases
PE(s) but reduces GE(s) by precisely the same factor.
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households might decrease their saving rate too much in general equilibrium in response
to an increase in income risk since they do no internalize the impact of the decline of the
saving rate on the capital stock and thus on wages of future generations. For the capital
tax to decrease in income risk this future generations effect has to be sufficiently strong.
To see this formally, in the next paragraph we first derive the decomposition of the first-
order condition for the optimal saving rate into the terms PE(s), GE(s) and FG(s) for the
general EZW utility function, and then we use this decomposition to write equation (84) as

1 = (1− τ ∗) Γ̃

Γ̃2︸ ︷︷ ︸
from PE(s)+GE(s)

− (1− τ ∗) α
s∗

Γ̃

Γ̃2︸ ︷︷ ︸
from FG(s)

.

Since Γ̃/Γ̃2 is increasing in income risk, the optimal capital tax rate τ ∗ can only decrease
in income risk when the last term, the future generations effect, is large. This effect calls
for a tax rate that decreases with income risk since s∗ is decreasing in risk for ρ > 1.

J.3 Details of Proposition 22

J.3.1 Implementation

We start with a discussion of the optimal tax rate in the steady state. The optimal steady
state capital tax rate τ ∗ satisfies, from equation (79)

1 = (1− τ ∗)αβ ((1− κ)(1− α))(
1
ρ
−1) (1− s∗)

1
ρ

s∗
Γ̃. (85)

We observe that the optimal tax rate is strictly increasing in Γ̃ and strictly decreasing in the
Ramsey saving rate s∗ that is to be implemented. Further, recall that the Ramsey saving
rate s∗ itself satisfies the first order condition (83)

(1− s∗)
1
ρ

s∗
=

1
α
− 1

s∗

βζ̃Γ̃2

(86)

and is impacted by income risk through Γ̃2. Plugging (86) into (85) and exploiting the
definition of ζ̃ yields

1 = (1− τ ∗)
(

1− α

s∗

) Γ̃

Γ̃2

. (87)
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Lemma 2 establishes that Γ̃
Γ̃2

is strictly increasing in income risk, and Proposition 21 in
the main text establishes that an increase in income risk increases s∗ if and only if ρ < 1

and decreases it if and only if ρ > 1. To sign the overall impact of income risk on the
capital tax rate it is therefore useful to consider the following cases:

Case ρ ≤ 1. This case gives clean results. From equation (87), since Γ̃
Γ̃2

is strictly in-
creasing in income risk, and since s∗ is increasing in income risk for ρ ≤ 1, strictly so if
ρ < 1, it follows that τ ∗ is strictly increasing in risk.

Case ρ > 1 and σ ≤ 1/ρ. In this case Γ̃ is strictly increasing in risk (Lemma 2) and s∗ is
strictly decreasing in risk (see Proposition 21). It then directly follows from equation (87)

that τ ∗ is strictly increasing in income risk as well.

Case ρ > 1 and σ > 1/ρ. Since ρ > 1, the Ramsey saving rate s∗ is strictly decreasing
in income risk (which by itself calls for a tax rate that is strictly increasing in income risk),
by equation (85). However, now the direct impact of income risk on taxes through the term
Γ̃ might call for lower taxes since Γ̃ might now be decreasing in income risk. If Γ̃ is weakly
increasing in income risk, then so is τ ∗. Thus a necessary condition for τ ∗ to decrease with
income risk is for Γ̃ to be strictly decreasing with income risk. This in turn is a necessary
and sufficient condition for the private saving rate in competitive equilibrium to decrease
with income risk (see Proposition 19). Thus the Ramsey tax rate τ ∗ is strictly decreasing in
income risk only if the private saving rate sCE(τ) is strictly decreasing in income risk (for
any given tax rate τ ).

Finally, one might conjecture that, since ρ > 1 and σ > 1/ρ is required for the capital
tax to decrease in income risk, that as long as both parameters are large enough the result
will materialize. This conjecture turns out to be false, as an investigation of the most
extreme case ρ = σ =∞ shows. In this case lifetime utility is given by

Vt = cyt + βcot+1 (88)

where cot+1 is consumption in old age if the lowest possible labor productivity realization
η = η

t+1
materializes. In this case one can solve analytically for the optimal interior

Ramsey saving and tax rate, and show that the optimal tax rate is the higher the lower is
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η
t+1

and thus the higher is income risk.16

Proposition 4 above provides a fairly general implementation result for expected utility
along the transition. The next proposition extends this result to EZW utility.

Proposition 23. If the utility function is of the EZW form, then in general equilibrium we

have sτ = ∂st
∂τt+1

< 0 and unambiguous implementation.

Proof. Recall from Section J.1 that the first-order condition in any period t of the transition
is

1 = αβ ((1− κ)(1− α))(α−1)(1− 1
ρ) (1− τt+1)k

α(α−1)(1− 1
ρ)

t st
(α−1)(1− 1

ρ)
(

1− st
st

) 1
ρ

Γ̃.

Observe that an increase in the tax rate decreases the RHS. Collect terms on the saving rate
as

st
(α−1)(1− 1

ρ)
(

1− st
st

) 1
ρ

= st
(α−1)(1− 1

ρ)−
1
ρ (1− st)

1
ρ

and notice that for any ρ > 0 term (1 − st)
1
ρ decreases in the saving rate. In response

to an increase of the tax rate this force drives the saving rate down. To get unambiguous
implementation, we thus require that the exponent

(α− 1)

(
1− 1

ρ

)
− 1

ρ
< 0 ⇔ 1

ρ
> 0 > 1− 1

α

which holds for all α ∈ (0, 1).

J.3.2 Decomposition of the FOC into PE(s), GE(s) and FG(s)

Now we decompose the first order condition of the Ramsey problem into three terms:

16In this case it is possible that the Ramsey government will want to implement a saving rate of s = 1 since
households have linear preferences over consumption when young and minimum (across η) consumption
when old. As long as η is sufficiently small, however, the Ramsey government prefers to implement an
interior saving rate.
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Proposition 24. For θ = 1, σ 6= 1
ρ
, terms PE(s), GE(s), FG(s) are given by

PE(s) = − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
Γ̃k(s)α(1− 1

ρ)

GE(s) =
αβ

s
k(s)α(1− 1

ρ)
(

Γ̃2 − Γ̃
)

FG(s) =
α

s(1− α)

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

α2β

s(1− α)
k(s)α(1− 1

ρ)Γ̃2

where k(s) = (s(1− κ)(1− α))
1

1−α is the steady state capital stock.

Therefore,

PE(s) +GE(s) = − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
k(s)α(1− 1

ρ)Γ̃2. (89)

and

PE(s)+GE(s)+FG(s) =

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ

(
α

s(1− α)
− 1

1− s

)
+

1

s
k(s)α(1− 1

ρ) αβ

(1− α)
Γ̃2.

(90)

Thus, compared to the expressions for these three effects we derived in Section 4.1, the
partial equilibrium precautionary savings effect still cancels out the current generations
general equilibrium effect (Γ̃ cancels out when adding up PE(s) and GE(s)). However,
additionally risk enters through Γ̃2. With ρ < 1 an increase of risk increases Γ̃2 thereby
pushing up the desired saving rate of the Ramsey planner. The reason is that an increase
of risk decreases the utility value of second period consumption of current generations
(effect in GE(s)) and of all future generations (effect in FG(s)). With a low IES, it is
optimal to compensate this with higher savings; vice versa for a high IES where the Ramsey
planner rather prefers increased first-period consumption, respectively current generations
consumption, over future consumption in response to an increase in risk.

94



Proof of Proposition 24. Calculating the respective terms yields

PE(s) = (1− κ)(1− α)kα
[
− ((1− s)(1− κ) (1− α) kα)−

1
ρ +

αk′(s)
α−1

β

(∫
(κη(1− α) + α)1−σ dΨ

)σ− 1
ρ

1−σ

k′(s)
α(σ− 1

ρ)
∫

(κη(1− α) + α)−σ dΨk′(s)
−ασ


= − 1

1− s

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

αβ

s
Γ̃k(s)α(1− 1

ρ).

and for

GE(s) = β

(∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ
∫ (

co(η)−σ
)

[κηw′(s) + (1− κ)(1− α)kαR′(s)s] dΨ(η)

= βΓ
σ− 1

ρ
1−σ

2 k′(s)
α(σ− 1

ρ)
∫

(κη(1− α) + α)−σ k′(s)
−ασ

α(1− α)s−1

·
[
κηk′(s)

α − (1− κ)(1− α)kαk′(s)
α−1

s
]
dΨ

=
αβ

s
k′(s)

α(1− 1
ρ)Γ

σ− 1
ρ

1−σ
2

∫
(κη(1− α) + α)−σ [κη(1− α) + α− 1] dΨ

=
αβ

s
k(s)α(1− 1

ρ)
(

Γ̃2 − Γ̃
)
.

When maximizing steady state utility, FG(s) is equivalent to the derivative of the utility
function with respect to the current period capital stock. Therefore:

FG(s) = ucyc
y
k(s)k(s)s + β

(∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ
∫ (

co(η)−σ
)
cok′(s)k

′(s)k(s)k(s)sdΨ,

where

ucyc
y
k(s)k(s)s = ((1− s)(1− κ)(1− α)k(s)α)−

1
ρ (1− s)(1− κ)(1− α)αk(s)α−1(1− κ)k(s)α

=
α

s(1− α)

(
1− s
s

)1− 1
ρ

k′(s)
1− 1

ρ

and (∫
co(η)1−σdΨ

)σ− 1
ρ

1−σ

= Γ
σ− 1

ρ
1−σ

2 k′(s)
α(σ− 1

ρ)
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and

β

∫
c0−σcok′(s)k

′(s)k(s)k(s)sdΨ =

β

∫
(κη(1− α) + α)−σ k′(s)

−ασ
(κη(1− α) + α) dΨαk′(s)α−1k′(s)α(1− κ)k(s)α−1

=
α2β

s(1− α)
k′(s)

α(1−σ)
Γ2.

Therefore:

FG(s) =
α

s(1− α)

(
1− s
s

)1− 1
ρ

k(s)1− 1
ρ +

α2β

s(1− α)
k(s)α(1− 1

ρ)Γ̃2.

J.3.3 Decomposition of τ ∗

Given this result, the optimal tax rate τ ∗ can be decomposed as stated in the previous
paragraph:

Corollary 7. τ ∗ can only be decreasing in risk if the effect of FG(s) is sufficiently strong.

Proof. We know that the FOC for s∗ follows from

PE(s) +GE(s) + FG(s) = 0

Now set FG(s) = 0. Rewrite from (89)

PE(s) +GE(s) = 0 ⇔ s

(1− s)
1
ρ

= αβζ̃Γ̃2,

which uses k(s) = (s(1− κ)(1− α))
1

1−α and ζ̃ = ((1 − α)(1 − κ))
1
ρ
−1. Using the above

in (84) gives

1 = (1− τ ∗) Γ̃

Γ̃2

and Γ̃
Γ̃2

is unambiguously increasing in risk, see Section K.1. Using the above we can thus
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decompose equation (81) as described above:

1 = (1− τ ∗) Γ̃

Γ̃2︸ ︷︷ ︸
from PE(s)+GE(s)

− (1− τ ∗) α
s∗

Γ̃

Γ̃2︸ ︷︷ ︸
from FG(s)

.

J.4 Pareto Improving Transitions

Observe that specification (11) nests EZW preferences as a special case. Thus, Proposi-
tion 3 and Corollary 3 apply.

K Income Risk and Γ,Γ2, Γ̃, Γ̃2

K.1 General Case

In this section we prove Lemma 2 in Subsection J.2.3 through two separate Lemmas. For
this, recall that the relevant expressions involving idiosyncratic income risk are given by:

Γ =

∫
(κη(1− α) + α)−σ dΨ(η)

Γ2 =

∫
(κη(1− α) + α)1−σ dΨ(η)

Γ̃ = Γ
σ− 1

ρ
1−σ

2 Γ = vσ−
1
ρΓ

Γ̃2 = Γ
σ− 1

ρ
1−σ

2 Γ2 = Γ
1− 1

ρ
1−σ
2 = v1− 1

ρ

Γ̃

Γ̃2

=
Γ

Γ2

v ≡


[∫

(α + (1− α)κη)1−σ dΨ(η)
] 1

1−σ for σ 6= 1

exp
[∫

ln (α + (1− α)κη) dΨ(η)
]

for σ = 1

Furthermore, as in the main text we use the notion of a mean-preserving spread in the
random variable η when referring to an increase in risk, that is, formally, random variable
η is replaced by η̃ = η + ν, where ν is a random variable with zero mean and positive
variance (and Assumption 1 applies to η̃ as well).
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Lemma 3. The certainty equivalent v is decreasing in η-risk.

Proof. If σ > 1 (σ < 1), then (α + (1− α)κη)1−σ is convex and downward sloping (con-
cave and upward sloping) in η. The certainty equivalent of a convex and downward sloping
(respectively, concave and upward sloping) function is decreasing in risk.

Lemma 4. The comparative statics of the other risk terms with respect to a mean-preserving

spread in η are given by:

1. Γ is increasing in η-risk.

2. Γ2 is increasing (respectively, decreasing) in η-risk if σ > 1 (respectively σ < 1).

3. Γ̃2 is increasing (decreasing) in η-risk if ρ < 1 (ρ > 1).

4. For ρ < 1, Γ̃ is increasing in η-risk. For ρ > 1 we have the following case distinction:

(a) For 1
σ
> ρ > 1, Γ̃ unambiguously increases in income risk.

(b) For ρ > 1, ρ > 1
σ
> 0, i.e., σ <∞ the effect of η-risk on Γ̃ is ambiguous.

Proof. 1. Γ is increasing in η-risk because (κη(1− α) + α)−σ is a convex function in
η (with the degree of convexity increasing in σ).

2. Γ2 is increasing (decreasing) in η-risk if σ > 1 (σ < 1) because (κη(1− α) + α)1−σ

is a convex (concave) function of η.

3. Γ̃2 is increasing (decreasing) in η-risk if ρ < 1 (ρ > 1) because the certainty equiv-
alent v decreases in η-risk and because for ρ < 1 (ρ > 1) the exponent 1 − 1

ρ
is

negative (positive).

4. For ρ < 1, Γ̃ is increasing in η-risk (sufficient condition). To see this, rewrite Γ̃ as

Γ̃ =
Γ

Γ
−
−(1−σ)+(1− 1

ρ )

1−σ
2

=
Γ

Γ
1−

1− 1
ρ

1−σ
2

=
Γ

Γ2

Γ
1− 1

ρ
1−σ
2 =

Γ

Γ2

v1− 1
ρ (91)

Notice that for σ ≤ 1, Γ
Γ2

is the ratio of the expectation of a strictly convex and a
concave function. Hence, for σ ≤ 1 the term Γ

Γ2
is increasing in risk by Jensen’s

inequality. For σ > 1 term Γ
Γ2

is the ratio of the expectation of two convex func-
tions with the convexity of the function in the numerator, (κη(1− α) + α)−σ, being
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stronger than in the denominator, (κη(1− α) + α)1−σ as long as σ <∞. Therefore,
also for 1 < σ < ∞ term Γ

Γ2
is increasing in risk. For σ = ∞ term Γ

Γ2
is equal to 1.

Finally, since the certainty equivalent v is decreasing in η-risk, term v1− 1
ρ increases

in η-risk if and only if ρ < 1.

5. For ρ > 1 we have the following case distinction, based on the representation of Γ̃ =

vσ−
1
ρΓ:

(a) For 1
σ
> ρ > 1, Γ̃ unambiguously increases in η-risk because v decreases in η-

risk and σ − 1
ρ
< 0.

(b) For ρ > 1, ρ > 1
σ

the effect of η-risk on Γ̃ is ambiguous because v is decreas-
ing in η-risk and σ − 1

ρ
> 0 so that vσ−

1
ρ is decreasing in η-risk whereas Γ

is increasing in η-risk. Rewriting Γ̃ as in equation (91) does not resolve this
ambiguity because term Γ

Γ2
is increasing in η-risk whereas v1− 1

ρ is decreasing
in η risk because 1− 1

ρ
> 0.

K.2 Expressing Γ-Intervals from Proposition 4 in Terms of Variances

The bounds in Proposition 4 can be given in terms of the variances of the income shock η,
to a second-order Taylor approximation of the integral defining Γ. This approximation
around η = 1 gives

Γ(α, κ, σ,Ψ) ≈ Γ̄ +
[κ(1− α)]2

[κ(1− α) + α]3
σ2
η.

With this approximation the interval for intermediate risk, item 2 of Proposition 4, becomes
σ2
η ∈

(
σ2
η, σ

2
η

)
where

σ2
η =

(κ(1− α) + α)3

(κ(1− α))2

(
1 + β

(1− α)β
− Γ̄

)
σ2
η =

(κ(1− α) + α)3

(κ(1− α))2

(
1(

(1− α)− 1
Γ̄

)
β
− Γ̄

)

and σ2
η > σ2

η > 0 under the maintained assumption that β <
[
(1− α)Γ̄− 1

]−1
. Thus,

all intervals defined in Proposition 4 can be expressed in terms of variances and are non-
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empty. Also note that if the distribution Ψ is log-normal and thus exclusively determined
by its variance (given that the mean is pinned down by the assumption E(η) = 1), then no
second order approximation is necessary in the above argument, but the mapping between
the variance bounds and the Γ bounds is algebraically much more involved.
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